ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:156KB ,
资源ID:618147      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-618147-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016高考考前三个月数学(浙江专用理科)二轮文档:专题7 解析几何 第32练 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016高考考前三个月数学(浙江专用理科)二轮文档:专题7 解析几何 第32练 WORD版含答案.doc

1、第32练直线与圆锥曲线的综合问题题型分析高考展望本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数范围的考查,探索类和存在性问题考查的概率也很高.常考题型精析题型一直线与圆锥曲线位置关系的判断及应用例1(1)(

2、2015福建改编)已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点.若AFBF4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是_.(2)设焦点在x轴上的椭圆M的方程为1 (b0),其离心率为.求椭圆M的方程;若直线l过点P(0,4),则直线l何时与椭圆M相交?点评对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.变式训练1已知椭圆C:1(ab0)的焦距为4,且过点P(,).(1

3、)求椭圆C的方程;(2)设Q(x0,y0)(x0y00)为椭圆C上一点,过点Q作x轴的垂线,垂足为E.取点A(0,2),连结AE,过点A作AE的垂线交x轴于点D.点G是点D关于y轴的对称点,作直线QG,问这样作出的直线QG是否与椭圆C一定有唯一的公共点?并说明理由.题型二直线与圆锥曲线的弦的问题例2设椭圆C:1 (ab0)的左,右焦点分别为F1,F2,且焦距为6,点P是椭圆短轴的一个端点,PF1F2的周长为16.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线l被椭圆C所截得的线段中点的坐标.点评直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些

4、问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.变式训练2在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)A,B为椭圆C上满足AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.高考题型精练1.(2015北京)已知椭圆C:x23y23,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x3交于点M.(1)求椭圆C的离心率;(2)若AB垂直于x轴,求直线BM的斜率;(3)试判断直线BM与直

5、线DE的位置关系,并说明理由.2.如图,已知抛物线C的顶点为O(0,0),焦点为F(0,1).(1)求抛物线C的方程;(2)过点F作直线交抛物线C于A,B两点.若直线AO、BO分别交直线l:yx2于M、N两点,求MN的最小值.3.(2015南京模拟)已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:xy20的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求AFBF的最小值.4.已知点A,B是抛物线C:y22px (p0)上不同的

6、两点,点D在抛物线C的准线l上,且焦点F到直线xy20的距离为.(1)求抛物线C的方程;(2)现给出以下三个论断:直线AB过焦点F;直线AD过原点O;直线BD平行于x轴.请你以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题,并加以证明.答案精析第32练直线与圆锥曲线的综合问题常考题型典例剖析例1(1)解析设左焦点为F0,连结F0A,F0B,则四边形AFBF0为平行四边形.AFBF4,AFAF04,a2.设M(0,b),则,1b2.离心率e .(2)解因为椭圆M的离心率为,所以2,得b22.所以椭圆M的方程为1.()过点P(0,4)的直线l垂直于x轴时,直线l与椭圆M相交.(

7、)过点P(0,4)的直线l与x轴不垂直时,可设直线l的方程为ykx4.由消去y,得(12k2)x216kx280.因为直线l与椭圆M相交,所以(16k)24(12k2)2816(2k27)0,解得k.综上,当直线l垂直于x轴或直线l的斜率的取值范围为时,直线l与椭圆M相交.变式训练1解(1)由已知条件得椭圆C的焦点为F1(2,0),F2(2,0),PF121,PF221,2aPF1PF24,则a2.b2a2c24,因此椭圆C的方程为1.(2)设D(x1,0),(x1,2),(x0,2);由,得0,则G(x1,0)x1x080,则x1,kQG,直线QG的方程为y(x0x8),又1,y4(8x),

8、可得y(x0x8),将代入1整理得8x216x0x8x0,(16x0)2464x0,直线QG与椭圆C一定有唯一的公共点.例2解(1)设椭圆的半焦距为c,则由题意,可得解得所以b2a2c2523216.故所求椭圆C的方程为1.(2)方法一过点(3,0)且斜率为的直线l的方程为y(x3),将之代入C的方程,得1,即x23x80.因为点(3,0)在椭圆内,设直线l与椭圆C的交点为A(x1,y1),B(x2,y2),因为x1x23,所以线段AB中点的横坐标为,纵坐标为(3).故所求线段的中点坐标为.方法二过点(3,0)且斜率为的直线l的方程为y(x3),因为(3,0)在椭圆内,所以直线l与椭圆有两个交

9、点,设两交点的坐标分别为(x1,y1),(x2,y2),中点M的坐标为(x0,y0),则有由,得,即.又y0(x03), 所以故所求线段的中点坐标为.变式训练2解(1)设椭圆C的方程为1(ab0),则解得a,b1,故椭圆C的方程为y21.(2)当A,B两点关于x轴对称时,设直线AB的方程为xm,由题意得m0或0m0,所以t2或t.当A,B两点关于x轴不对称时,设直线AB的方程为ykxn,由得(12k2)x24knx2n220.设A(x1,y1),B(x2,y2),由16k2n24(12k2)(2n22)0得12k2n2.此时x1x2,x1x2,y1y2k(x1x2)2n.所以AB2 .又点O到

10、直线AB的距离d.所以SAOBdAB2 .|n|.令r12k2代入上式得:3r216n2r16n40.解得r4n2或rn2,即12k24n2或12k2n2.又tt()t(x1x2,y1y2).又点P为椭圆C上一点,所以t21,即t21.由得t24或t2.又t0,故t2或t.经检验,适合题意.综合得t2或t.常考题型精练1.解(1)椭圆C的标准方程为y21,所以a,b1,c.所以椭圆C的离心率e.(2)因为AB过点D(1,0)且垂直于x轴,所以可设A(1,y1),B(1,y1),直线AE的方程为y1(1y1)(x2),令x3,得M(3,2y1),所以直线BM的斜率kBM1.(3)直线BM与直线D

11、E平行,证明如下:当直线AB的斜率不存在时,由(2)可知kBM1.又因为直线DE的斜率kDE1,所以BMDE,当直线AB的斜率存在时,设其方程为yk(x1)(k1),设A(x1,y1),B(x2,y2),则直线AE的方程为y1(x2).令x3,得点M,由得(13k2)x26k2x3k230,所以x1x2,x1x2,直线BM的斜率kBM,因为kBM10所以kBM1kDE.所以BMDE,综上可知,直线BM与直线DE平行.2.解(1)由题意可设抛物线C的方程为x22py(p0),则1,所以抛物线C的方程为x24y.(2)设A(x1,y1),B(x2,y2),直线AB的方程为ykx1.由消去y,整理得

12、x24kx40,所以x1x24k,x1x24.从而|x1x2|4.由解得点M的横坐标xM.同理点N的横坐标xN.所以MN|xMxN|8.令4k3t,t0,则k.当t0时,MN2 2.当t0,解得c1.所以抛物线C的方程为x24y.(2)由yx2得yx,设A(x1,y1),B(x2,y2),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为yy1(xx1),即yxy1,即x1x2y2y10.同理可得切线PB的方程为x2x2y2y20,又点P(x0,y0)在切线PA和PB上,所以x1x02y02y10,x2x02y02y20,所以(x1,y1),(x2,y2)为方程x0x2y02y0 的

13、两组解,所以直线AB的方程为x0x2y2y00.(3)由抛物线定义知AFy11,BFy21,所以AFBF(y11)(y21)y1y2(y1y2)1,联立方程消去x整理得y2(2y0x)yy0,所以y1y2x2y0,y1y2y,所以AFBFy1y2(y1y2)1yx2y01y(y02)22y012y2y0522,所以当y0时,AFBF取得最小值,且最小值为.4.解(1)抛物线C:y22px (p0)的焦点为F,依题意得d,解得p2,抛物线C的方程为y24x.(2)命题.若直线AB过焦点F,且直线AD过原点O,则直线BD平行于x轴.设直线AB的方程为xty1,A(x1,y1),B(x2,y2),由

14、得y24ty40,y1y24.直线AD的方程为yx,点D的坐标为.y2.直线BD平行于x轴.命题:若直线AB过焦点F,且直线BD平行于x轴,则直线AD过原点O.设直线AB的方程为xty1,A(x1,y1),B(x2,y2),由得y24ty40,y1y24,即点B的坐标为,直线BD平行于x轴,D点的坐标为.(x1,y1),.由于x1y1(1)y1y10,即A,O,D三点共线.直线AD过原点O.命题:若直线AD过原点O,且直线BD平行于x轴,则直线AB过焦点F.设直线AD的方程为ykx(k0),则点D的坐标为(1,k),直线BD平行于x轴,yBk.xB,即点B的坐标为,由得k2x24x,xA,yA,即点A的坐标为.,(k)kk0.,即A,F,B三点共线.直线AB过焦点F.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3