ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:160.50KB ,
资源ID:618031      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-618031-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012高三一轮(人教A版)数学(理)练习:选修4-4 第1课时.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012高三一轮(人教A版)数学(理)练习:选修4-4 第1课时.doc

1、1.(2010北京)极坐标方程(1)()0(0)表示的图形是()A两个圆B两条直线C一个圆和一条射线 D一条直线和一条射线解析:(1)()0(0),1或(0)1表示圆心在原点,半径为1的圆,(0)表示x轴的负半轴,是一条射线,故选C.答案:C2在平面直角坐标系xOy中,点P的直角坐标为(1,)若以原点O为极点,x轴正半轴为极轴建立极坐标系,则点P的极坐标可以是()A. B.C. D.解析:2,xOP,点P的极坐标可以是.故选C.答案:C3在直角坐标系xOy中,已知点C(3,),若以O为极点,x轴的正半轴为极轴,则点C的极坐标(,)(0,0)可写为_解析:由题意知2,.答案:4设直线过极坐标系中

2、的点M(2,0),且垂直于极轴,则它的极坐标方程为_解析:设所求直线的任一点的极坐标为(,),由题意可得cos 2.答案:cos 25在极坐标系中,直线sin2被圆4截得的弦长为_解析:直线sin2可化为xy20,圆4可化为x2y216,由圆中的弦长公式得224.答案:46设平面上的伸缩变换的坐标表达式为则在这一坐标变换下正弦曲线ysin x的方程变为_解析:代入ysin x得y3sin 2x.答案:y3sin 2x7在极坐标系中,已知两点A、B的极坐标分别为,则AOB(其中O为极点)的面积为_解析:结合图形,AOB的面积SOAOBsin3.答案:38在极坐标系中,直线截圆2cos(R)所得的

3、弦长是_解析:把直线和圆的极坐标方程化为直角坐标方程分别为yx和221.显然圆心在直线yx上故所求的弦长等于圆的直径的大小,即为2.答案:29直线2x3y10经过变换可以化为6x6y10,则坐标变换公式是_解析:设直线2x3y10上任一点的坐标为(x,y),经变换后对应点的坐标为(x,y),设坐标变换公式为.,将其代入直线方程2x3y10,得xy10,将其与6x6y10比较得k,h.坐标变换公式为.答案:10(2010广东卷)在极坐标系(,)(02)中,曲线2sin 与cos 1的交点的极坐标为_解析:由2sin ,得22sin ,其普通方程为x2y22y,cos 1的普通方程为x1,联立,解

4、得,点(1,1)的极坐标为.答案:11求极坐标方程cos所表示的曲线解析:所给方程可化为,所以2(cos sin )转化为直角坐标方程为x2y2(xy),即22,即以为圆心,为半径的圆12同一平面直角坐标系中,经过伸缩变换后,曲线C:x2y236变为何种曲线,并求曲线的焦点坐标解析:圆x2y236上任一点为P(x,y),伸缩变换后对应的点的坐标为P(x,y),则:4x29y236,即1.曲线C在伸缩变换后得椭圆1,其焦点坐标为(,0)13已知两点A,B的极坐标分别为,.(1)求A,B两点间的距离;(2)求直线AB的极坐标方程解析:(1)AOB,OAB为正三角形,故AB4.(2)设O在直线AB上

5、的射影为H,则H的坐标为.直线AB的极坐标方程cos sin 40.14在极坐标系中,已知圆C的圆心坐标为C,半径R,求圆C的极坐标方程【解析方法代码108001167】解析:将圆心C化成直角坐标为(1,),半径R,故圆C的方程为(x1)2(y)55.再将C化成极坐标方程,得(cos 1)2(sin )25.化简,得24cos10,此即为所求的圆C的极坐标方程15在极坐标系中,已知三点M,N(2,0),P.(1)将M、N、P三点的极坐标化为直角坐标(2)判断M、N、P三点是否在一条直线上解析:(1)由公式,M的直角坐标为(1,),N的直角坐标为(2,0),P的直角坐标为(3,)(2)kMN,k

6、NP,kMNkNP,M、N、P三点在同一条直线上16在极坐标系下,已知圆O:cos sin 和直线l:sin.(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标【解析方法代码108001168】解析:(1)圆O:cos sin ,即2cos sin ,圆O的直角坐标方程为:x2y2xy,即x2y2xy0,直线l:sin,即sin cos 1,则直线l的直角坐标方程为:yx1,即xy10.(2)由得,故直线l与圆O公共点的极坐标为.17在极坐标系中,直线l的极坐标方程为(R),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为(为参数),求直

7、线l与曲线C的交点P的直角坐标解析:因为直线l的极坐标方程为(R),所以直线l的普通方程为yx,又因为曲线C的参数方程为(为参数),所以曲线C的直角坐标方程为yx2(x2,2),联立解方程组得或根据x的范围应舍去故P点的直角坐标为(0,0)18如图,在圆心的极坐标为A(4,0),半径为4的圆中,求过极点O的弦的中点的轨迹的极坐标方程,并将其化为直角坐标方程解析:设M(,)是轨迹上任意一点,连结OM并延长交圆A于点P(0,0),则有0,02.由圆心为(4,0),半径为4的圆的极坐标方程为8cos 得08cos 0,所以28cos ,即4cos ,故所求轨迹方程是4cos ,它表示以(2,0)为圆

8、心,2为半径的圆因为xcos ,ysin ,由4cos 得24cos ,所以x2y24x,即x2y24x0为圆的直角坐标方程19求证:过抛物线的焦点的弦被焦点分成的两部分的倒数和为常数证明:建立如图所示的极坐标系,设抛物线的极坐标方程为.PQ是抛物线的弦,若点P的极角为,则点Q的极角为.因此有FP,FQ.所以(常数)20如图,点A在直线x4上移动,OPA为等腰直角三角形,OPA的顶角为OPA(O,P,A依次按顺时针方向排列),求点P的轨迹方程,并判断轨迹形状解析:取O为极点,x轴正半轴为极轴,建立极坐标系,则直线x4的极坐标方程为cos 4,设A(0,0),P(,),点A在直线cos 4上,0cos 04.OPA为等腰直角三角形,且OPA,而|OP|,|OA|0,以及POA,0,且0.把代入,得点P的轨迹的极坐标方程为cos4.由cos4得(cos sin )4,点P的轨迹的普通方程为xy4,是过点(4,0)且倾斜角为的直线.w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3