ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:286.50KB ,
资源ID:615071      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-615071-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022秋新教材高中数学 习题课(一)空间向量与立体几何 新人教A版选择性必修第一册.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022秋新教材高中数学 习题课(一)空间向量与立体几何 新人教A版选择性必修第一册.doc

1、习题课(一) 空间向量与立体几何一、选择题1若直线l的方向向量为a,平面的法向量为n,能使l的是()Aa(1,0,1),n(2,0,0)Ba(1,3,5),n(1,0,1)Ca(0,2,1),n(1,0,1)Da(1,1,3),n(0,3,1)解析:选D若l,则an0,只有选项D中an0.2已知空间三点O(0,0,0),A(1,1,0),B(0,1,1),在直线OA上有一点H满足BHOA,则点H的坐标为()A(2,2,0)B(2,2,0)C. D.解析:选C由(1,1,0),且点H在直线OA上,可设H(,0),则(,1,1)又BHOA,0,即(,1,1)(1,1,0)0,即10,解得,H.3已

2、知A(1,0,0),B(0,1,1),与的夹角为120,则的值为()A BC D解析:选C(1,),cos 120,得.经检验不合题意,舍去,所以.4(2018全国卷)在长方体ABCDA1B1C1D1中,ABBC1,AA1,则异面直线AD1与DB1所成角的余弦值为()A BC D解析:选C法一:如图,分别以DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系由题意,得A(1,0,0),D(0,0,0),D1(0,0,),B1(1,1,),(1,0,),(1,1,),1101()22,|2,|,cos,.法二:如图,在长方体ABCDA1B1C1D1的一侧补上一个相同的长方体EFBAE1

3、F1B1A1.连接B1F,由长方体性质可知,B1FAD1,所以DB1F为异面直线AD1与DB1所成的角或其补角连接DF,由题意,得DF,FB12,DB1.在DFB1中,由余弦定理,得DF2FBDB2FB1DB1cosDB1F,即54522cos DB1F,cos DB1F.5.如图,在三棱柱ABCA1B1C1中,侧棱AA1底面ABC,底面ABC是等腰直角三角形,ACB90,侧棱AA12,D,E分别是CC1与A1B的中点,点E在平面ABD上的射影是ABD的重心G.则A1B与平面ABD所成角的正弦值为()A BC D解析:选A以C为坐标原点,CA所在的直线为x轴,CB所在的直线为y轴,CC1所在的

4、直线为z轴建立空间直角坐标系,如图所示设CACBa,则A(a,0,0),B(0,a,0),A1(a,0,2),D(0,0,1),E,G,(0,a,1)点E在平面ABD上的射影是ABD的重心G,平面ABD,0,解得a2.,(2,2,2),平面ABD,为平面ABD的一个法向量又cos,A1B与平面ABD所成角的正弦值为.6.如图,在四棱锥PABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD底面ABCD,M为底面ABCD内的一个动点,且满足MPMC.则点M在正方形ABCD内的轨迹为()解析:选A如图,以D为原点,DA,DC所在的直线分别为x,y轴建立如图所示的空间直角坐标系设正方形A

5、BCD的边长为a,M(x,y,0),则0xa,0ya,P,C(0,a,0),则|,|.由|,得x2y,所以点M在正方形ABCD内的轨迹为一条线段yx(0xa),故选A.二、填空题7若向量a(1,1,x),b(1,2,1),c(1,1,1)满足条件(ca)2b2,则x_.解析:a(1,1,x),b(1,2,1),c(1,1,1),ca(0,0,1x),2b(2,4,2)(ca)2b2(1x)2,x2.答案:28正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的余弦值等于_解析:如图,连接BD交AC于O,连接D1O,由于BB1DD1,DD1与平面ACD1所成的角就是BB1与平面ACD1

6、所成的角易知DD1O即为所求设正方体的棱长为1,则DD11,DO,D1O,cosDD1O.BB1与平面ACD1所成角的余弦值为.答案: 9在三棱柱ABCA1B1C1中,底面是棱长为1的正三角形,侧棱AA1底面ABC,点D在棱BB1上,且BD1,若AD与平面AA1C1C所成的角为,则sin 的值等于_解析:如图所示,建立空间直角坐标系,易求得点D,平面AA1C1C的一个法向量是n(1,0,0),所以cosn,即sin .答案:三、解答题10如图,在正三棱柱ABCA1B1C1中,ABAA1,点D是A1B1的中点求直线AD和平面ABC1夹角的正弦值解:如图所示,设O是AC的中点,以O为原点建立空间直

7、角坐标系不妨设AA1,则AB2,相关各点的坐标分别是A(0,1,0),B(,0,0),C1(0,1,),D.易知(,1,0),(0,2,),.设平面ABC1的一个法向量为n(x,y,z),则有解得xy,zy.故可取n(1,)所以cosn,.即直线AD和平面ABC1夹角的正弦值为.11.如图,四棱锥PABCD中,PA底面ABCD,ABCD,ADCD1,BAD120,ACB90.(1)求证:BC平面PAC;(2)若二面角DPCA的余弦值为,求点A到平面PBC的距离解:(1)证明:PA底面ABCD,BC平面ABCD,PABC,ACB90,BCAC,又PAACA,BC平面PAC.(2)设APh,取CD

8、的中点E,则AECD,AEAB.又PA底面ABCD,PAAE,PAAB,故建立如图所示的空间直角坐标系,则A(0,0,0),P(0,0,h),C,D,B(0,2,0),(0,1,0),设平面PDC的法向量n1(x1,y1,z1),则即取x1h,n1.由(1)知平面PAC的一个法向量为,|cosn1,|,解得h,同理可求得平面PBC的一个法向量n2(3,2),所以,点A到平面PBC的距离为d.12如图,在三棱柱ABCA1B1C1中,BAC90,ABAC2,A1A4,A1在底面ABC的射影为BC的中点,D是B1C1的中点(1)证明:A1D平面A1BC;(2)求二面角A1BDB1的平面角的余弦值解:

9、(1)证明:设E为BC的中点,由题意得A1E平面ABC,所以A1EAE.因为ABAC,所以AEBC.故AE平面A1BC.由D,E分别为B1C1,BC的中点,得DEB1B且DEB1B,从而DEA1A且DEA1A,所以A1AED为平行四边形故A1DAE.又因为AE平面A1BC,所以A1D平面A1BC.(2)以CB的中点E为原点,分别以射线EA,EB为x轴,y轴的正半轴,建立空间直角坐标系Exyz,如图所示由题意知各点坐标如下:A1(0,0,),B(0,0),D(,0,),B1(,)因此(0,),(,),(0,0)设平面A1BD的法向量为m(x1,y1,z1),平面B1BD的法向量为n(x2,y2,z2)由即可取m(0,1)由即可取n(,0,1)于是|cosm,n|.由题意可知,所求二面角的平面角是钝角,故二面角A1BDB1的平面角的余弦值为.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3