1、6.4 数据的离散程度课时达标1. 如图是甲.乙两位同学5次数学考试成绩 的折线统计图,你认为成绩较稳定的是 ( ). A.甲 B.乙 C.甲.乙的成绩一样稳定 D.无法确定2. 人数相等的甲.乙两班学生参加了同一次 数学测验,班级平均分和方差如下: =80,=80,s=240,s =180,则成 绩较为稳定的班级为( ). A.甲班 B.乙班 C.两班成绩一样稳定 D.无法确定3. 下列统计量中,能反映一名同学在79 年级学段的学习成绩稳定程度的是( ) A.平均数 B.中位数 C.众数 D.方差4. 某车间6月上旬生产零件的次品数如下 (单位:个):0,2,0,2,3,0,2,3, 1,2
2、则在这10天中该车间生产零件的次 品数的( ). A.众数是4 B.中位数是1.5 C.平均数是2 D.方差是1.255. 在甲.乙两块试验田内,对生长的禾苗高 度进行测量,分析数据得:甲试验田内禾 苗高度数据的方差比乙实验田的方差小, 则( ). A.甲试验田禾苗平均高度较高 B.甲试验田禾苗长得较整齐 C.乙试验田禾苗平均高度较高 D.乙试验田禾苗长得较整齐课后作业基础巩固1. 5名同学目测同一本教科书的宽度时, 产生的误差如下(单位:cm):0,2,2, 1,1,则这组数据的极差为_cm2. 五个数1,2,4,5,a的平均数是3,则 a= ,这五个数的方差为 .3. 已知一组数据1,2,
3、1,0,1,2,0, 1,则这组数据的平均数为 ,中 位数为 ,方差为 . 4. 某校高一新生参加军训,一学生进行五次 实弹射击的成绩(单位:环)如下:8,6, 10,7,9,则这五次射击的平均成绩是_ 环,中位数_环,方差是_.5. 已知数据a.b.c的方差是1,则4a,4b, 4c的方差是 .6. 某学生在一学年的6次测验中语文.数学 成绩分别为(单位:分): 语文:80,84,88,76,79,85 数学:80,75,90,64,88,95 试估计该学生是数学成绩稳定还是语文 成绩稳定?班级参加人数平均次数中位数来源:学。科。网Z。X。X。K方差甲班55 135 149 190乙班551
4、35 151 1107. 在某次体育活动中,统计甲.乙两班学生 每分钟跳绳的成绩(单位:次)情况如下 表: 下面有三种说法:(1)甲班学生的平均成 绩高于乙班的学生的平均成绩;(2)甲班 学生成绩的波动比乙班成绩的波动大; (3)甲班学生成绩优秀的人数比乙班学生 成绩优秀的人数(跳绳次数150次为优 秀)少,试判断上述三个说法是否正确? 请说明理由.能力提高8. 若一组数据1,2,3,x的极差为6,则x 的值是( ). A.7 B.8 C.9 D.7或39. 已知甲.乙两组数据的平均数相等,若甲 组数据的方差0.055,乙组数据的 方差 0.105,则( ). A.甲组数据比乙组数据波动大 B
5、.乙组数据比甲组数据波动大 C.甲组数据与乙组数据的波动一样大 D.甲.乙两组数据的数据波动不能比较10. 一组数据13,14,15,16,17的标准差 是( ). A.0 B.10 C. D.211. 在方差的计算公式s=(x-20)+ (x-20)+(x-20)中,数字 10和20分别表示的意义可以是( ). A.数据的个数和方差 B.平均数和数据的个数 C.数据的个数和平均数 D.数据组的方差和平均数12. 已知一组数据的方差为,数据为: 1,0,3,5,x,那么x等于( ). A.2或5.5 B.2或5.5 C.4或11 D.4或1113. 如果将所给定的数据组中的每个数都减 去一个非
6、零常数,那么该数组的 ( ) A.平均数改变,方差不变 B.平均数改变,方差改变 C.平均输不变,方差改变 D.平均数不变,方差不变中考在线14. 已知一组数据-3,-2,1,3,6,x的中 位数为1,则其方差为 .15. 已知数据:1,2,1,0,1,2,0, 1,这组数据的方差为_.16. 若40个数据的平方和是56,平均数是 ,则这组数据的方差是_.17. 体育老师对甲.乙两名同学分别进行了 5次立定跳远测试,经计算这两名同学 成绩的平均数相同,甲同学成绩的方差来源:学&科&网Z&X&X&K 是0.03,乙同学的成绩(单位:m)如下: 2.3 2.2 2.5 2.1 2.4,那么这两名同
7、学 立定跳远成绩比较稳定的是_同学.18. 为了从甲、乙、丙三名同学中选拔一人 参加射击比赛,对他们的射击水平进行 了测验,三个人在相同条件下各射击5 次,命中的环数如下(单位:环) 甲:6 10 5 10 9 乙:5 9 8 10 8 丙:6 10 4 10 8 (1)求,; (2)你认为该选拔哪名同学参加射击比 赛?为什么?19.某校运动员要从甲、乙两名跳远运动员 中挑选一人参加全国比赛,在最近的10 次选拔赛中,他们的成绩如下(单位: 厘米) 甲:685,696,710,698,712,697, 704,700,713,701. 乙:713,718,680,674,718,693, 685,690,698,724. (1)它们的平均成绩分别是多少? (2)甲、乙这10次比赛成绩的方差分别 是多少? (3)这两名运动员的成绩各有什么特点? (4)历届比赛表明,成绩达到6.96米就 可能夺冠,你认为为了夺冠应选谁参加这 次比赛?如果历届成绩表明,成绩达到 7.10米,就可破纪录,那么你认为为了 破纪录应选谁参加比赛?