1、第1讲空间几何体的结构、三视图和直观图最新考纲1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知 识 梳 理1.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上、下底面是全等且平行的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.2.旋转
2、体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法基本要求:长对正,高平齐,宽相等.在画三视图时,重叠的线只画一条,挡住的线要画成虚线.4.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y轴的夹角为45(或135),z轴与x轴、y轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴
3、.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.诊 断 自 测1.判断正误(在括号内打“”或“”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)用斜二测画法画水平放置的A时,若A的两边分别平行于x轴和y轴,且A90,则在直观图中,A45.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的A时,把x,y轴画成相交成45或13
4、5,平行于x轴的线还平行于x轴,平行于y轴的线还平行于y轴,所以A也可能为135.(4)正方体和球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯视图为圆心和圆.答案(1)(2)(3)(4)2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱 B.圆锥 C.四面体 D.三棱柱解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案A3.如图,长方体ABCDABCD中被截去一部分,其中EHAD.剩下的几何体是()A.棱台B.四棱柱C.五棱柱 D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.答案C4.(2016
5、天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为()解析先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图,故其侧视图为图.答案B5.正AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是_.解析画出坐标系xOy,作出OAB的直观图OAB(如图).D为OA的中点.易知DBDB(D为OA的中点),SOABSOABa2a2.答案a26.(2017浙江五校联考)如图,正方体ABCDA1B1C1D1的棱长为4,P为BC的中点,Q为线段CC1上的动点(异于C点),过点A,P,Q的平面截
6、该正方体所得的截面记为M.当CQ_时(用数值表示),M为等腰梯形;当CQ4时,M的面积为_.解析连接AP交DC的延长线于点N,当点Q为CC1的中点,即CQ2时,连接D1N,则D1N过点Q,PQ綉AD1,显然APD1Q,M为等腰梯形;当CQ4时,NQ交棱DD1延长线上一点(设为G),且GD14,AG过A1D1的中点,此时M为菱形,其对角线长分别为4和4,故其面积为8.答案28考点一空间几何体的结构特征【例1】 (1)给出下列命题:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;棱台的上、下底面可以不相似,但侧棱长一定相等
7、.其中正确命题的个数是()A.0 B.1 C.2 D.3(2)以下命题:以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆面;一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3解析(1)不一定,只有当这两点的连线平行于轴时才是母线;不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)由圆台的定义可知错误,正确.对于命题,只有平行于圆锥底面的平面截圆锥
8、,才能得到一个圆锥和一个圆台,不正确.答案(1)A(2)B规律方法(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】 下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周
9、上任意一点的连线都是母线解析如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D正确.答案D考点二空间几何体的三视图(多维探究)命题角度一由空间几何体的直观图判断三视图【例21】 一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.答案B命题
10、角度二由三视图判定几何体【例22】 (1)(2014全国卷)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)(2015北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1 B. C. D.2解析(1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱,故选B.(2)由题中三视图知,此四棱锥的直观图如图所示,其中PC平面ABCD,PC1,底面四边形ABCD为正方形且边长为1,最长棱长PA.答案(1)B(2)C规律方法(1)由实物图画三视图或判断选择三视图,按照“正侧一样高
11、,正俯一样长,俯侧一样宽”的特点确认.(2)根据三视图还原几何体.对柱、锥、台、球的三视图要熟悉.明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.提醒对于简单组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置,区分好实线和虚线的不同.【训练2】 (1)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为()(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正
12、视图可能是()解析(1)还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.(2)由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.答案(1)B(2)A考点三空间几何体的直观图【例3】 已知等腰梯形ABCD,上底CD1,腰ADCB,下底AB3,以下底所在直线为x轴,则由斜二测画法画出的直观图ABCD的面积为_.解析如图所示,作出等腰梯形ABCD的直观图:因为OE1,所以OE,EF,则直观图ABCD的面积S.答案规律方法(1)画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴
13、成45或135)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图S原图形.【训练3】 (2017余姚一中检测)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),ABC45,ABAD1,DCBC,则这块菜地的面积为_.解析如图1,在直观图中,过点A作AEBC,垂足为E.在RtABE中,AB1,ABE45,BE.又四边形AECD为矩形,ADEC1.BCBEEC1.由此还
14、原为原图形如图2所示,是直角梯形ABCD.在梯形ABCD中,AD1,BC1,AB2.这块菜地的面积S(ADBC)AB22.答案21.画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”.(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想.1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.
15、对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.基础巩固题组(建议用时:30分钟)一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案B2.如图所示的几何体是棱柱的有()A. B.C. D.解析由棱柱的定义知两个几何体是棱柱.答案C3.(2017衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析易知侧视图的投影面为矩形,又AF的投影线为虚线
16、,即为左下角到右上角的对角线,该几何体的侧视图为选项D.答案D4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为()解析由直观图和正视图、俯视图可知,该几何体的侧视图应为面PAD,且EC投影在面PAD上且为实线,点E的投影点为PA的中点,故B正确.答案B5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 B.4C.6 D.4解析如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥ABCD,最长的棱为AD6.答案C6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是()A
17、. B. C. D.解析由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故正确.答案A7.(2015全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为()A. B.C. D.解析由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V1111.剩余部分的体积V213.因此,.答案D8.(2017东阳调研)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD平面BCD.所以该三棱
18、锥的侧视图可能为选项D.答案D二、填空题9.(2017台州调研)直观图(如图)中,四边形OABC为菱形且边长为2 cm,则在xOy原坐标系中四边形为_(填图形形状);面积为_cm2.解析将直观图恢复到平面图形(如图),是OA2 cm,OC4 cm的矩形,SOABC248(cm2).答案矩形810.(2017兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于_.解析由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为.答案11.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为_.解析由题中三视图可知,三棱锥
19、的直观图如图所示,其中PA平面ABC,M为AC的中点,且BMAC.故该三棱锥的最长棱为PC.在RtPAC中,PC2.答案212.如图,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的正视图与侧视图的面积的比值为_.解析三棱锥PABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案113.(2017金华调研)在三棱锥PABC中,PB6,AC3,G为PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC.则截面的周长为_.解析过点G作EFAC交PA,PC于点E,F,过E,F分别作ENPB,FMPB分别交AB,BC
20、于点N,M,连接MN,四边形EFMN是平行四边形,即EFMN2,即FMEN2,截面的周长为248.答案8能力提升题组(建议用时:15分钟)14.在如图所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号的四个图,则该四面体的正视图和俯视图分别为()A.和 B.和 C.和 D.和解析如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为,俯视图为.答案D15.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是()A.4 B.5 C.3 D.3解析由三视图知几何体的直观图如图所示,计算可
21、知线段AF最长,且AF3.答案D16.(2017绍兴一中检测)已知ABC的平面直观图ABC是边长为a的正三角形,那么原ABC的面积为_.解析如图,过C作y轴的平行线CD,与x轴交于点D.则CDa.又CD是原ABC的高CD的直观图,所以CDa.故SABCABCDa2.答案a217.(2016北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为_.解析由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCDABCD.故该四棱柱的体积VSh(12)11.答案18.(2017宁波检测)正六棱柱ABCDEFA1B1C1D1E1F1的底面边长为,侧棱长
22、为1,则动点从A沿表面移动到E1时的最短路程是_;动点从A沿表面移动到D1时的最短路程为_.解析侧面展开图如图(1),(2),从A沿表面到E1的最短路程为AE13.从A沿表面到D1的最短路程为AD1.(1)(2)答案3第2讲空间几何体的表面积与体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知 识 梳 理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧2rlS圆锥侧rlS圆台侧(r1r2)l3.柱、锥、台和球的表面积和体积表面积体
23、积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下V(S上S下)h球S4R2VR3诊 断 自 测1.判断正误(在括号内打“”或“”)(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则Ra.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)(2)(3)(4)2.已知圆锥的表面积等于12 cm2,其侧面展开图是一个半圆,则底面
24、圆的半径为()A.1 cm B.2 cm C.3 cm D. cm解析S表r2rlr2r2r3r212,r24,r2(cm).答案B3.(2017绍兴一中月考)一个几何体的三视图如图所示,则该几何体的表面积为()A.3 B.4 C.24 D.34解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为222121243.答案D4.(2016全国卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12 B.C.8 D.4解析设正方体的棱长为a,则a38,解得a2.设球的半径为R,则2Ra,即R.所以球的表面积S4R212.答案A5.(2016天津卷)已知一个四棱锥的底面
25、是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为_m3.解析根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为3 m.故该四棱锥的体积V2132 (m3).答案26.(2016浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.解析由三视图可知,该几何体为两个相同长方体组合,长方体的长、宽、高分别为4 cm、2 cm、2 cm,其直观图如下:其体积V222432(cm3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S2(222244)2222(832)872(cm2).答案7232考
26、点一空间几何体的表面积【例1】 (1)某几何体的三视图如图所示,则该几何体的表面积等于()A.82 B.112C.142 D.15(2)(2016全国卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17 B.18C.20 D.28解析(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为,所以底面周长为4,侧面积为2(4)82,两底面的面积和为21(12)3.所以该几何体的表面积为823112.(2)由三视图知该几何体为球去掉了球所剩的几何体(如图).设球的半径为R,则R3,R2.故几何体的
27、表面积S4R2R217 .答案(1)B(2)A规律方法空间几何体表面积的求法.(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.【训练1】 (2016全国卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.1836 B.5418C.90 D.81解析由几何体的三视图可知,该几何体是底面为正方形的斜平行六面体.由题意可知该几何体底面边长为3,高为6,所以侧棱长为3.故该几何体的表
28、面积S322(36)2(33)25418.答案B考点二空间几何体的体积【例2】 (1)(2016山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A. B.C. D.1(2)(2016浙江卷)如图,在ABC中,ABBC2,ABC120.若平面ABC外的点P和线段AC上的点D,满足PDDA,PBBA,则四面体PBCD的体积的最大值是_.解析(1)由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为,从而该几何体的体积为121.(2)设PDDAx,在ABC中,ABBC2,ABC120,AC2,CD2x,且ACB(180120)30,SBCDBC
29、DCsinACB2(2x)(2x).要使四面体体积最大,当且仅当点P到平面BCD的距离最大,而P到平面BCD的最大距离为x.则V四面体PBCD(2x)x,由于0x2,故当x时,V四面体PBCD的最大值为3.答案(1)C(2)规律方法空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练2】 (1)已知等腰直角三角形的直角边的长为2,将该三角
30、形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C.2 D.4(2)(2015浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积是_cm3.解析(1)绕等腰直角三角形的斜边所在的直线旋转一周形成的曲面围成的几何体为两个底面重合,等体积的圆锥的组合体,如图所示.每一个圆锥的底面半径和高都为,故所求几何体的体积V22.(2)由三视图可知该几何体是由棱长为2 cm的正方体与底面边长为2 cm正方形、高为2 cm的正四棱锥组成.又正方体的体积V1238(cm3),正四棱锥的体积V2222(cm3).所以该几何体的体积VV1V2(cm3).答案(1)B(2
31、)考点三多面体与球的切、接问题(典例迁移)【例3】 (经典母题)(2016全国卷)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球.若ABBC,AB6,BC8,AA13,则V的最大值是()A.4 B. C.6 D.解析由ABBC,AB6,BC8,得AC10.要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面ABC的内切圆的半径为r.则68(6810)r,所以r2.2r43,不合题意.球与三棱柱的上、下底面相切时,球的半径R最大.由2R3,即R.故球的最大体积VR3.答案B【迁移探究1】 若本例中的条件变为“直三棱柱ABCA1B1C1的6个顶点都在球O的球面上”,若
32、AB3,AC4,ABAC,AA112,求球O的表面积.解将直三棱柱补形为长方体ABECA1B1E1C1,则球O是长方体ABECA1B1E1C1的外接球.体对角线BC1的长为球O的直径.因此2R13.故S球4R2169.【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.解如图,设球心为O,半径为r,则在RtAOF中,(4r)2()2r2,解得r,则球O的体积V球r3.规律方法空间几何体与球接、切问题的求解方法.(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体
33、的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.(2)若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以
34、得到,利用等积法可以用来求解几何图形的高或几何体的高.1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.基础巩固题组(建议用时:40分钟)一、选择题1.(2015全国卷)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各
35、为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛 B.22斛C.36斛 D.66斛解析设米堆的底面半径为r尺,则r8,所以r.所以米堆的体积为Vr255(立方尺).故堆放的米约有1.6222(斛).答案B2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2 B. C. D.3解析由三视图知,该几何体是四棱锥,底面是直角梯形,且S底(12)23.Vx33,解得x3.答案D3.(2017宁波十校联考)一个四面体的三视图如图所示,则该四面体的表面积是()A.1 B.2 C.12 D.2解析四面体的直观图如图所示.侧面SAC底面
36、ABC,且SAC与ABC均为腰长是的等腰直角三角形,SASCABBC,AC2.设AC的中点为O,连接SO,BO,则SOAC,又SO平面SAC,平面SAC平面ABCAC,SO平面ABC,又BO平面ABC,SOBO.又OSOB1,SB,故SAB与SBC均是边长为的正三角形,故该四面体的表面积为22()22.答案B4.(2015全国卷)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36 B.64 C.144 D.256解析因为AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥OABC的体积取得最大值.由R2R36,得R
37、6.从而球O的表面积S4R2144.答案C5.(2017青岛模拟)如图,四棱锥PABCD的底面ABCD为平行四边形,NB2PN,则三棱锥NPAC与三棱锥DPAC的体积比为()A.12 B.18C.16 D.13解析设点P,N在平面ABCD内的投影分别为点P,N,则PP平面ABCD,NN平面ABCD,所以PPNN,则在BPP中,由BN2PN得.V三棱锥NPACV三棱锥PABCV三棱锥NABCSABCPPSABCNNSABC(PPNN)SABCPPSABCPP,V三棱锥DPACV三棱锥PACDSACDPP,又四边形ABCD是平行四边形,SABCSACD,.故选D.答案D二、填空题6.(2016浙江
38、卷)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是_cm2,体积是_cm3.解析由三视图可知该几何体由一个正方体和一个长方体组合而成,上面正方体的边长为2 cm,下面长方体是底面边长为4 cm,高为2 cm,其直观图如右图:其表面积S62224242422280(cm2).体积V22244240(cm3).答案80407.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为_.解析依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R,则2R2,解得R1,所以VR3.答案8.(2017湖州质检)某几何体的三视图如图所示,则该几何体的体积为_;表面积为
39、_.解析由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.体积V122121;半圆锥母线l,S表12212121211.答案1三、解答题9.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P,Q在正视图中所示位置,P为所在线段中点,Q为顶点,求在几何体表面上,从P点到Q点的最短路径的长.解(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧(2a)(a)a2,S圆柱侧(2a)(2a)4a2,S圆柱底a2,所以S表a24a2a2(5)a2.(2)沿P
40、点与Q点所在母线剪开圆柱侧面,如图.则PQa,所以从P点到Q点在侧面上的最短路径的长为a.10.(2015全国卷)如图,长方体ABCDA1B1C1D1中,AB16,BC10,AA18,点E,F分别在A1B1,D1C1上,A1ED1F4.过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比值.解(1)交线围成的正方形EHGF如图所示.(2)如图,作EMAB,垂足为M,则AMA1E4,EB112,EMAA18.因为四边形EHGF为正方形,所以EHEFBC10.于是MH6,AH10,HB6.故S四边形A1
41、EHA(410)856,S四边形EB1BH(126)872.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为.能力提升题组(建议用时:25分钟)11.若某一几何体的正视图与侧视图均为边长是1的正方形,且其体积为,则该几何体的俯视图可以是()解析若俯视图为A,则该几何体为正方体,其体积为1,不满足条件.若俯视图为B,则该几何体为圆柱,其体积为1,不满足条件.若俯视图为C,则该几何体为三棱柱,其体积为111,满足条件.若俯视图为D,则该几何体为圆柱的,体积为1,不满足条件.答案C12.(2017丽水调研)在三棱锥PABC中,PA平面ABC,ACBC,D为侧棱PC上的一点,它的正视图和侧
42、视图如图所示,则下列命题正确的是()A.AD平面PBC且三棱锥DABC的体积为B.BD平面PAC且三棱锥DABC的体积为C.AD平面PBC且三棱锥DABC的体积为D.BD平面PAC且三棱锥DABC的体积为解析因为PA平面ABC,所以PABC,又ACBC,PAACA,所以BC平面PAC,所以BCAD,又由三视图可得,在PAC中,PAAC4,D为PC的中点,所以ADPC,又PCBCC,故AD平面PBC.又由三视图可知BC4,ADC90,BC平面PAC,故VDABCVBADC224.答案C13.(2017嘉兴调研)一个空间几何体的三视图(单位:cm)如图所示,则侧视图的面积为_cm2,该几何体的体积
43、为_cm3.解析根据几何体的三视图,得:该几何体的左边是半圆锥,右边是直三棱锥的组合体,如图所示;且该几何体侧视图是底边长为2,高为1的等腰三角形,面积为211 cm2,该几何体的体积为V半圆锥V三棱锥121211 cm3.答案114.四面体ABCD及其三视图如图所示,平行于棱AD,BC的平面分别交四面体的棱AB,BD,DC,CA于点E,F,G,H.(1)求四面体ABCD的体积;(2)证明:四边形EFGH是矩形.(1)解由该四面体的三视图可知,BDDC,BDAD,ADDC,BDDC2,AD1,又BDDCD,AD平面BDC,四面体ABCD的体积V221.(2)证明BC平面EFGH,平面EFGH平
44、面BDCFG,平面EFGH平面ABCEH,BCFG,BCEH,FGEH.同理,EFAD,HGAD,EFHG,四边形EFGH是平行四边形.又AD平面BDC,BC平面BDC,ADBC,EFFG,四边形EFGH是矩形.15.如图所示,A1A是圆柱的母线,AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点,AA1AB2.(1)求证:BC平面A1AC;(2)求三棱锥A1ABC的体积的最大值.(1)证明因为C是底面圆周上异于A,B的一点,且AB为底面圆的直径,所以BCAC.因为AA1平面ABC,BC平面ABC,所以AA1BC.因为AA1ACA,AA1平面A1AC,AC平面A1AC,所以BC平面A1
45、AC.(2)解法一设ACx,在RtABC中,BC(0x2),故VA1ABCSABCAA1ACBCAA1x(0x2),即VA1ABCx.因为0x2,所以0x24.所以当x22,即x时,三棱锥A1ABC的体积取得最大值为.法二在RtABC中,AC2BC2AB24,VA1ABCSABCAA1ACBCAA1ACBC.当且仅当ACBC时等号成立,此时ACBC.所以三棱锥A1ABC的体积的最大值为.第3讲空间点、直线、平面之间的位置关系最新考纲1.理解空间直线、平面位置关系的定义;2.了解可以作为推理依据的公理和定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.知 识 梳 理1.平面
46、的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言aba相交关系图形语言符号语言abAaAl独有关系图形语言符号语言a,b是异面直线a3.平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(1)定义:设a,b是两条异面直
47、线,经过空间任一点O作直线aa,bb,把a与b所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)范围:.诊 断 自 测1.判断正误(在括号内打“”或“”)(1)两个平面,有一个公共点A,就说,相交于过A点的任意一条直线.()(2)两两相交的三条直线最多可以确定三个平面.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)若直线a不平行于平面,且a,则内的所有直线与a异面.()解析(1)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故错误.(3)如果两个平面有三个公共点,则这两个平面相交或重合,故错误.(4)由于a不平行于平面,且a,则a与平面
48、相交,故平面内有与a相交的直线,故错误.答案(1)(2)(3)(4)2.(必修2P52B1(2)改编)如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30 B.45C.60 D.90解析连接B1D1,D1C,则B1D1EF,故D1B1C为所求的角.又B1D1B1CD1C,D1B1C60.答案C3.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么
49、它们有且只有一条过该点的公共直线解析选项A是面面平行的性质定理,是由公理推证出来的.答案A4.(2016山东卷)已知直线a,b分别在两个不同的平面 ,内,则“直线a和直线b相交”是“平面和平面相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析由题意知a,b,若a,b相交,则a,b有公共点,从而,有公共点,可得出,相交;反之,若,相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面和平面相交”的充分不必要条件.答案A5.若直线ab,且直线a平面,则直线b与平面的位置关系是_.答案b与相交或b或b6.如图所示,平面,两两相交,
50、a,b,c为三条交线,且ab,则a与c的位置关系是_;b与c的位置关系是_.答案acbc考点一平面的基本性质及应用【例1】 如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.E,F分别是AB,AA1的中点,EFA1B.又A1BCD1,EFCD1,E,C,D1,F四点共面.(2)EFCD1,EFA1C1,则截面的形状可以是_(把你认为可能的结果都填上).解析由题意知,当截面平行于侧棱时所得截面为矩形,当截面与侧棱不平行时,所得的截面是梯形.答案矩形或梯形考
51、点一线面、面面平行的相关命题的真假判断【例1】 (2015安徽卷)已知m,n是两条不同直线,是两个不同平面,则下列命题正确的是()A.若,垂直于同一平面,则与平行B.若m,n平行于同一平面,则m与n平行C.若,不平行,则在内不存在与平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m,n,mn,则m,故错误;D项,假设m,n垂直于同一平面,则必有mn与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案D规律方法(1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理
52、,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.(2)结合题意构造或绘制图形,结合图形作出判断.特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.【训练1】 (2017台州调研)设m,n是两条不同的直线,是三个不同的平面,给出下列四个命题:若m,n,则mn;若,m,则m;若n,mn,m,则m;若m,n,mn,则.其中是真命题的是_(填上正确命题的序号).解析mn或m,n异面,故错误;易知正确;m或m,故错误;或与相交,故错误.答案考点二直线与平面平行的判定与性质(多维探究)命题角度一
53、直线与平面平行的判定【例21】 (2016全国卷)如图,四棱锥PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4,M为线段AD上一点,AM2MD,N为PC的中点.(1)证明:MN平面PAB;(2)求四面体NBCM的体积.(1)证明由已知得AMAD2.如图,取BP的中点T,连接AT,TN,由N为PC中点知TNBC,TNBC2.又ADBC,故TN綉AM,所以四边形AMNT为平行四边形,于是MNAT.因为AT平面PAB,MN平面PAB,所以MN平面PAB.(2)解因为PA平面ABCD,N为PC的中点,所以N到平面ABCD的距离为PA.如图,取BC的中点E,连接AE.由ABAC3得A
54、EBC,AE.由AMBC得M到BC的距离为,故SBCM42.所以四面体NBCM的体积VNBCMSBCM.命题角度二直线与平面平行性质定理的应用【例22】 如图,四棱锥PABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH平面ABCD,BC平面GEFH.(1)证明:GHEF;(2)若EB2,求四边形GEFH的面积.(1)证明因为BC平面GEFH,BC平面PBC,且平面PBC平面GEFHGH,所以GHBC.同理可证EFBC,因此GHEF.(2)解如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PAPC,O是
55、AC的中点,所以POAC,同理可得POBD.又BDACO,且AC,BD都在底面ABCD内,所以PO底面ABCD.又因为平面GEFH平面ABCD,且PO平面GEFH,所以PO平面GEFH.因为平面PBD平面GEFHGK,PO平面PBD.所以POGK,且GK底面ABCD,又EF平面ABCD,从而GKEF.所以GK是梯形GEFH的高.由AB8,EB2得EBABKBDB14,从而KBDBOB,即K为OB的中点.再由POGK得GKPO,即G是PB的中点,且GHBC4.由已知可得OB4,PO6,所以GK3.故四边形GEFH的面积SGK318.规律方法(1)判断或证明线面平行的常用方法有:利用反证法(线面平
56、行的定义);利用线面平行的判定定理(a,b,aba);利用面面平行的性质定理(,aa);利用面面平行的性质(,a,aa).(2)利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.【训练2】 在四棱锥PABCD中,ADBC,ABBCAD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP平面BEF;(2)求证:GH平面PAD.证明(1)连接EC,ADBC,BCAD,E为AD的中点,BC綉AE,四边形ABCE是平行四边形,O为AC的中点,又F是PC的中点,FOAP,又F
57、O平面BEF,AP平面BEF,AP平面BEF.(2)连接FH,OH,F,H分别是PC,CD的中点,FHPD,又PD平面PAD,FH平面PAD,FH平面PAD.又O是BE的中点,H是CD的中点,OHAD,又AD平面PAD,OH平面PAD,OH平面PAD.又FHOHH,平面OHF平面PAD.又GH平面OHF,GH平面PAD.考点三面面平行的判定与性质(典例迁移)【例3】 (经典母题)如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.证明(1)G,H分别是A1B1,A1C1的中点,GH
58、是A1B1C1的中位线,则GHB1C1.又B1C1BC,GHBC,B,C,H,G四点共面.(2)E,F分别为AB,AC的中点,EFBC,EF平面BCHG,BC平面BCHG,EF平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,A1G綉EB,四边形A1EBG是平行四边形,A1EGB.A1E平面BCHG,GB平面BCHG,A1E平面BCHG.又A1EEFE,平面EFA1平面BCHG.【迁移探究1】 如图,在本例条件下,若点D为BC1的中点,求证:HD平面A1B1BA.证明如图所示,连接A1B.D为BC1的中点,H为A1C1的中点,HDA1B,又HD平面A1B1BA,A1B平面A1B
59、1BA,HD平面A1B1BA.【迁移探究2】 在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D平面AB1D1”,试求的值.解连接A1B交AB1于O,连接OD1.由平面BC1D平面AB1D1,且平面A1BC1平面BC1DBC1,平面A1BC1平面AB1D1D1O,所以BC1D1O,则1.又由题设,1,即1.规律方法(1)判定面面平行的主要方法利用面面平行的判定定理.线面垂直的性质(垂直于同一直线的两平面平行).(2)面面平行的性质定理两平面平行,则一个平面内的直线平行于另一平面.若一平面与两平行平面相交,则交
60、线平行.提醒利用面面平行的判定定理证明两平面平行时需要说明是一个平面内的两条相交直线与另一个平面平行.【训练3】 (2016山东卷)在如图所示的几何体中,D是AC的中点,EFDB.(1)已知ABBC,AEEC.求证:ACFB;(2)已知G,H分别是EC和FB的中点.求证:GH平面ABC.证明(1)因为EFDB,所以EF与DB确定平面BDEF,图如图,连接DE.因为AEEC,D为AC的中点,所以DEAC.同理可得BDAC.又BDDED,所以AC平面BDEF.因为FB平面BDEF,所以ACFB.(2)如图,设FC的中点为I,连接GI,HI.图在CEF中,因为G是CE的中点,所以GIEF.又EFDB
61、,所以GIDB.在CFB中,因为H是FB的中点,所以HIBC.又HIGII,所以平面GHI平面ABC,因为GH平面GHI,所以GH平面ABC.1.线线、线面、面面平行间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a,a.1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.面面平行的判定中易忽视“面内两条相交线”这一条件.3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,
62、实质上也可以相交.4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.基础巩固题组(建议用时:40分钟)一、选择题1.(2017保定模拟)有下列命题:若直线l平行于平面内的无数条直线,则直线l;若直线a在平面外,则a;若直线ab,b,则a;若直线ab,b,则a平行于平面内的无数条直线.其中真命题的个数是()A.1 B.2C.3 D.4解析命题l可以在平面内,不正确;命题直线a与平面可以是相交关系,不正确;命题a可以在平面内,不正确;命题正确.答案A2.设m,n是不同的直线,是不同的平面,且m,n,则“”是“m且n”的()A.充分不
63、必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析若m,n,则m且n;反之若m,n,m且n,则与相交或平行,即“”是“m且n”的充分不必要条件.答案A3.(2017绍兴一中检测)如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面 B.平行C.相交 D.以上均有可能解析在三棱柱ABCA1B1C1中,ABA1B1,AB平面ABC,A1B1平面ABC,A1B1平面ABC,过A1B1的平面与平面ABC交于DE.DEA1B1,DEAB.答案B4.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点
64、,能得出AB平面MNP的图形的序号是()A. B. C. D.解析中,易知NPAA,MNAB,平面MNP平面AAB,可得出AB平面MNP(如图).中,NPAB,能得出AB平面MNP.在中不能判定AB平面MNP.答案B5.已知m,n表示两条不同直线,表示平面,下列说法正确的是()A.若m,n,则mn B.若m,n,则mnC.若m,mn,则n D.若m,mn,则n解析若m,n,则m,n平行、相交或异面,A错;若m,n,则mn,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m,mn,则n或n,C错;若m,mn,则n与可能相交,可能平行,也可能n,D错.答案B二、填空题6.(2017台州月考
65、)在四面体ABCD中,M,N分别是ACD,BCD的重心,则MN与平面ABD的位置关系是_;与平面ABC的位置关系是_.解析如图,取CD的中点E.连接AE,BE,由于M,N分别是ACD,BCD的重心,所以AE,BE分别过M,N,则EMMA12,ENBN12,所以MNAB.因为AB平面ABD,MN平面ABD,AB平面ABC,MN平面ABC,所以MN平面ABD,MN平面ABC.答案平行平行7.(2017宁波调研)如图,四棱锥PABCD的底面是一直角梯形,ABCD,BAAD,CD2AB,PA底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为_.解析取PD的中点F,连接EF,AF,在PCD中,
66、EF綉CD.又ABCD且CD2AB,EF綉AB,四边形ABEF是平行四边形,EBAF.又EB平面PAD,AF平面PAD,BE平面PAD.答案平行8.(2017乐清模拟)如图所示,在正四棱柱ABCDA1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件_时,就有MN平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析连接HN,FH,FN,则FHDD1,HNBD,平面FHN平面B1BDD1,只需MFH,则MN平面FHN,MN平面B1BDD1.答案点M在线段FH上(或点M与点H重
67、合)三、解答题9.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论.解(1)点F,G,H的位置如图所示.(2)平面BEG平面ACH,证明如下:因为ABCDEFGH为正方体,所以BCFG,BCFG,又FGEH,FGEH,所以BCEH,BCEH,于是四边形BCHE为平行四边形,所以BECH.又CH平面ACH,BE平面ACH,所以BE平面ACH.同理BG平面ACH.又BEBGB,所以平面BEG平面ACH.10.(2014全国卷)如图,四棱锥PABCD中,底面ABCD为
68、矩形,PA平面ABCD,E为PD的中点.(1)证明:PB平面AEC;(2)设AP1,AD,三棱锥PABD的体积V,求A到平面PBC的距离.(1)证明设BD与AC的交点为O,连接EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EOPB.又因为EO平面AEC,PB平面AEC,所以PB平面AEC.(2)解VPAABADAB.由V,可得AB.作AHPB交PB于H.由题设知ABBC,PABC,且PAABA,所以BC平面PAB,又AH平面PAB,所以BCAH,又PBBCB,故AH平面PBC.PB平面PBC,AHPB,在RtPAB中,由勾股定理可得PB,所以AH.所以A到平面PBC的距离
69、为.能力提升题组(建议用时:25分钟)11.给出下列关于互不相同的直线l,m,n和平面,的三个命题:若l与m为异面直线,l,m,则;若,l,m,则lm;若l,m,n,l,则mn.其中真命题的个数为()A.3 B.2 C.1 D.0解析中当与不平行时,也可能存在符合题意的l,m;中l与m也可能异面;中ln,同理,lm,则mn,正确.答案C12.在四面体ABCD中,截面PQMN是正方形,则在下列结论中,错误的是()A.ACBDB.AC截面PQMNC.ACBDD.异面直线PM与BD所成的角为45解析因为截面PQMN是正方形,所以MNQP,又PQ平面ABC,MN平面ABC,则MN平面ABC,由线面平行
70、的性质知MNAC,又MN平面PQMN,AC平面PQMN,则AC截面PQMN,同理可得MQBD,又MNQM,则ACBD,故A,B正确.又因为BDMQ,所以异面直线PM与BD所成的角等于PM与QM所成的角,即为45,故D正确.答案C13.如图所示,棱柱ABCA1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B平面B1CD,则A1DDC1的值为_.解析设BC1B1CO,连接OD.A1B平面B1CD且平面A1BC1平面B1CDOD,A1BOD,四边形BCC1B1是菱形,O为BC1的中点,D为A1C1的中点,则A1DDC11.答案114.(2015江苏卷)如图,在直三棱柱ABCA1B1C1
71、中,已知ACBC,BCCC1.设AB1的中点为D,B1CBC1E.求证:(1)DE平面AA1C1C;(2)BC1AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DEAC.又因为DE平面AA1C1C,AC平面AA1C1C,所以DE平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1平面ABC.因为AC平面ABC,所以ACCC1.又因为ACBC,CC1平面BCC1B1,BC平面BCC1B1,BCCC1C,所以AC平面BCC1B1.又因为BC1平面BCC1B1,所以BC1AC.因为BCCC1,所以矩形BCC1B1是正方形,因此BC1B1C.因为AC,B1C平
72、面B1AC,ACB1CC,所以BC1平面B1AC.又因为AB1平面B1AC,所以BC1AB1.15.(2017杭州七校联考)如图,在四棱台ABCDA1B1C1D1中,D1D平面ABCD,底面ABCD是平行四边形,AB2AD,ADA1B1,BAD60.(1)证明:AA1BD;(2)证明:CC1平面A1BD.证明(1)因为D1D平面ABCD,且BD平面ABCD,所以D1DBD.又AB2AD,BAD60,在ABD中,由余弦定理,得BDAD,所以AD2BD2AB2,即ADBD.又ADD1DD,所以BD平面ADD1A1.又AA1平面ADD1A1,所以AA1BD.(2)如图,连接AC,A1C1.设ACBD
73、E,连接EA1.因为四边形ABCD为平行四边形,所以ECAC.由棱台定义及AB2AD2A1B1知,A1C1EC且A1C1EC,所以四边形A1ECC1为平行四边形,因此CC1EA1.又EA1平面A1BD,CC1平面A1BD,所以CC1平面A1BD.第5讲直线、平面垂直的判定及其性质最新考纲1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.知 识 梳 理1.直线与平面垂直(1)直线和平面垂直的定义如果一条直线l与平面内的任意直线都垂直,就说直线l与平面互相垂直.(2)判定定理与性质定理文字
74、语言图形表示符号表示判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直l性质定理 两直线垂直于同一个平面,那么这两条直线平行ab2.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理一个平面经过另一个平面的一条垂线,则这两个平面互相垂直性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面l诊 断 自 测1.判断正误(在括号内打“”或“”)(1)直线l与平面内的无数条直线都垂直,则l.()(2)垂直于同一个平面的两平面平行.()(3)
75、若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面内的一条直线垂直于平面内的无数条直线,则.()解析(1)直线l与平面内的无数条直线都垂直,则有l或l与斜交或l或l,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面内的一条直线垂直于平面内的所有直线,则,故(4)错误.答案(1)(2)(3)(4)2.(必修2P56A组7T改编)下列命题中错误的是()A.如果平面平面,那么平面内一定存在直线平行
76、于平面B.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面C.如果平面平面,平面平面,l,那么l平面D.如果平面平面,那么平面内所有直线都垂直于平面解析对于D,若平面平面,则平面内的直线可能不垂直于平面,即与平面的关系还可以是斜交、平行或在平面内,其他选项易知均是正确的.答案D3.(2016浙江卷)已知互相垂直的平面,交于直线l,若直线m,n满足m,n,则()A.ml B.mnC.nl D.mn解析因为l,所以l,又n,所以nl,故选C.答案C4.已知m和n是两条不同的直线,和是两个不重合的平面,下面给出的条件中一定能推出m的是()A.且m B.且mC.mn且n D.mn且解析由线线平
77、行性质的传递性和线面垂直的判定定理,可知C正确.答案C5.(2017浙江名校协作体联考)已知矩形ABCD,AB1,BC.将ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,()A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直解析若ABCD,BCCD,则可得CD平面ACB,因此有CDAC.因为AB1,BCAD,CD1,所以AC1,所以存在某个位置,使得ABCD.答案B6.(必修2P67练习2改编)在三棱锥PABC中,点P在平面A
78、BC中的射影为点O,(1)若PAPBPC,则点O是ABC的_心.(2)若PAPB,PBPC,PCPA,则点O是ABC的_心.解析(1)如图1,连接OA,OB,OC,OP,在RtPOA、RtPOB和RtPOC中,PAPCPB,所以OAOBOC,即O为ABC的外心.图1 图2(2)如图2,PCPA,PBPC,PAPBP,PC平面PAB,AB平面PAB,PCAB,又ABPO,POPCP,AB平面PGC,又CG平面PGC,ABCG,即CG为ABC边AB的高.同理可证BD,AH分别为ABC边AC,BC上的高,即O为ABC的垂心.答案(1)外(2)垂考点一线面垂直的判定与性质【例1】 如图,在四棱锥PAB
79、CD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点.证明:(1)CDAE;(2)PD平面ABE.证明(1)在四棱锥PABCD中,PA底面ABCD,CD平面ABCD,PACD,又ACCD,且PAACA,CD平面PAC.而AE平面PAC,CDAE.(2)由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.由(1)知AECD,且PCCDC,AE平面PCD.而PD平面PCD,AEPD.PA底面ABCD,AB平面ABCD,PAAB.又ABAD,且PAADA,AB平面PAD,而PD平面PAD,ABPD.又ABAEA,PD平面ABE.规律方法(1)证明直线
80、和平面垂直的常用方法有:判定定理;垂直于平面的传递性(ab,ab);面面平行的性质(a,a);面面垂直的性质(,a,la,ll).(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【训练1】 如图所示,已知AB为圆O的直径,点D为线段AB上一点,且ADDB,点C为圆O上一点,且BCAC,PD平面ABC,PDDB.求证:PACD.证明因为AB为圆O的直径,所以ACCB.在RtABC中,由ACBC得,ABC30.设AD1,由3ADDB得,DB3,BC2.由余弦定理得CD2DB2BC22DBBCcos 303,所以
81、CD2DB2BC2,即CDAB.因为PD平面ABC,CD平面ABC,所以PDCD,由PDABD得,CD平面PAB,又PA平面PAB,所以PACD.考点二面面垂直的判定与性质【例2】 (2015山东卷)如图,三棱台DEFABC中,AB2DE,G,H分别为AC,BC的中点.(1)求证:BD平面FGH;(2)若CFBC,ABBC,求证:平面BCD平面EGH. 证明(1)连接DG,CD,设CDGFM,连接MH.在三棱台DEFABC中,AB2DE,G为AC中点,可得DFGC,且DFGC,则四边形DFCG为平行四边形.从而M为CD的中点,又H为BC的中点,所以HMBD,又HM平面FGH,BD平面FGH,故
82、BD平面FGH.(2)连接HE,因为G,H分别为AC,BC的中点,所以GHAB.由ABBC,得GHBC.又H为BC的中点,所以EFHC,EFHC,因此四边形EFCH是平行四边形,所以CFHE.又CFBC,所以HEBC.又HE,GH平面EGH,HEGHH,所以BC平面EGH.又BC平面BCD,所以平面BCD平面EGH.规律方法(1)证明平面和平面垂直的方法:面面垂直的定义;面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】 如图,在三棱锥PABC中,平面PAB平面ABC,PAPB,M,N分别为AB,
83、PA的中点.(1)求证:PB平面MNC;(2)若ACBC,求证:PA平面MNC.证明(1)因为M,N分别为AB,PA的中点,所以MNPB.又因为MN平面MNC,PB平面MNC,所以PB平面MNC.(2)因为PAPB,MNPB,所以PAMN.因为ACBC,AMBM,所以CMAB.因为平面PAB平面ABC,CM平面ABC,平面PAB平面ABCAB.所以CM平面PAB.因为PA平面PAB,所以CMPA.又MNCMM,所以PA平面MNC.考点三平行与垂直的综合问题(多维探究)命题角度一多面体中平行与垂直关系的证明【例31】 (2016江苏卷)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC
84、的中点,点F在侧棱B1B上,且B1DA1F,A1C1A1B1.求证:(1)直线DE平面A1C1F;(2)平面B1DE平面A1C1F.证明(1)在直三棱柱ABCA1B1C1中,A1C1AC.在ABC中,因为D,E分别为AB,BC的中点,所以DEAC,于是DEA1C1.又因为DE平面A1C1F,A1C1平面A1C1F,所以直线DE平面A1C1F.(2)在直三棱柱ABCA1B1C1中,A1A平面A1B1C1.因为A1C1平面A1B1C1,所以A1AA1C1.又因为A1C1A1B1,A1A平面ABB1A1,A1B1平面ABB1A1,A1AA1B1A1,所以A1C1平面ABB1A1.因为B1D平面ABB
85、1A1,所以A1C1B1D.又因为B1DA1F,A1C1平面A1C1F,A1F平面A1C1F,A1C1A1FA1,所以B1D平面A1C1F.因为直线B1D平面B1DE,所以平面B1DE平面A1C1F.规律方法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用.命题角度二平行垂直中探索性问题【例32】 如图所示,平面ABCD平面BCE,四边形ABCD为矩形,BCCE,点F为CE的中点.(1)证明:AE平面BDF.(2)点M为CD上任意一点,在线段AE上是否存在点P,使得PMBE?若存在,确定点P的位
86、置,并加以证明;若不存在,请说明理由.(1)证明连接AC交BD于O,连接OF,如图.四边形ABCD是矩形,O为AC的中点,又F为EC的中点,OF为ACE的中位线,OFAE,又OF平面BDF,AE平面BDF,AE平面BDF.(2)解当P为AE中点时,有PMBE,证明如下:取BE中点H,连接DP,PH,CH,P为AE的中点,H为BE的中点,PHAB,又ABCD,PHCD,P,H,C,D四点共面.平面ABCD平面BCE,平面ABCD平面BCEBC,CD平面ABCD,CDBC.CD平面BCE,又BE平面BCE,CDBE,BCCE,H为BE的中点,CHBE,又CDCHC,BE平面DPHC,又PM平面DP
87、HC,BEPM,即PMBE.规律方法(1)求条件探索性问题的主要途径:先猜后证,即先观察与尝试给出条件再证明;先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.【训练3】 (2017嘉兴七校联考)在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,ABCD,AC,AB2BC2,ACFB.(1)求证:AC平面FBC.(2)求四面体FBCD的体积.(3)线段AC上是否存在点M,使EA平面FDM?若存在,请说明其位置,并加以证明;若不存在,请
88、说明理由.(1)证明在ABC中,因为AC,AB2,BC1,所以AC2BC2AB2,所以ACBC.又因为ACFB,BCFBB,所以AC平面FBC.(2)解因为AC平面FBC,FC平面FBC,所以ACFC.因为CDFC,ACCDC,所以FC平面ABCD.在等腰梯形ABCD中可得CBDC1,所以FC1.所以BCD的面积为S.所以四面体FBCD的体积为VFBCDSFC.(3)解线段AC上存在点M,且点M为AC中点时,有EA平面FDM.证明如下:连接CE,与DF交于点N,取AC的中点M,连接MN.因为四边形CDEF是正方形,所以点N为CE的中点.所以EAMN.因为MN平面FDM,EA平面FDM,所以EA
89、平面FDM.所以线段AC上存在点M,且M为AC的中点,使得EA平面FDM成立.1.证明线面垂直的方法:(1)线面垂直的定义:a与内任何直线都垂直a;(2)判定定理1:l;(3)判定定理2:ab,ab;(4)面面垂直的性质:,l,a,ala;2.证明面面垂直的方法(1)利用定义:两个平面相交,所成的二面角是直二面角;(2)判定定理:a,a.3.转化思想:垂直关系的转化1.证明线面垂直时,易忽视面内两条线为相交线这一条件.2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.4.在解决直线与平面垂直的问题过程中,要注意直
90、线与平面垂直的定义、判定定理和性质定理的联合交替使用,即注意线线垂直和线面垂直的相互转化.基础巩固题组(建议用时:40分钟)一、选择题1.(2015浙江卷)设,是两个不同的平面,l,m是两条不同的直线,且l,m()A.若l,则 B.若,则lmC.若l,则 D.若,则lm解析由面面垂直的判定定理,可知A选项正确;B选项中,l与m可能平行;C选项中,与可能相交;D选项中,l与m可能异面.答案A2.(2017深圳四校联考)若平面,满足,l,P,Pl,则下列命题中是假命题的为()A.过点P垂直于平面的直线平行于平面B.过点P垂直于直线l的直线在平面内C.过点P垂直于平面的直线在平面内D.过点P且在平面
91、内垂直于l的直线必垂直于平面解析由于过点P垂直于平面的直线必平行于平面内垂直于交线的直线,因此也平行于平面,因此A正确.过点P垂直于直线l的直线有可能垂直于平面,不一定在平面内,因此B不正确.根据面面垂直的性质定理知,选项C,D正确.答案B3.如图,在正四面体PABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是()A.BC平面PDFB.DF平面PAEC.平面PDF平面PAED.平面PDE平面ABC解析因为BCDF,DF平面PDF,BC平面PDF,所以BC平面PDF,故选项A正确.在正四面体中,AEBC,PEBC,AEPEE,BC平面PAE,DFBC,则DF平面PAE,又D
92、F平面PDF,从而平面PDF平面PAE.因此选项B,C均正确.答案D4.(2017丽水调研)设l是直线,是两个不同的平面,则下列说法正确的是()A.若l,l,则 B.若l,l,则C.若,l,则l D.若,l,则l解析A中,或与相交,不正确.B中,过直线l作平面,设l,则ll,由l,知l,从而,B正确.C中,l或l,C不正确.D中,l与的位置关系不确定.答案B5.(2017天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把ABD和ACD折成互相垂直的两个平面后,某学生得出下列四个结论:BDAC;BAC是等边三角形;三棱锥DABC是正三棱锥;平面ADC平面ABC.其中正确
93、的是()A. B. C. D.解析由题意知,BD平面ADC,且AC平面ADC,故BDAC,正确;AD为等腰直角三角形斜边BC上的高,平面ABD平面ACD,所以ABACBC,BAC是等边三角形,正确;易知DADBDC,又由知正确;由知错.答案B二、填空题6.如图,已知PA平面ABC,BCAC,则图中直角三角形的个数为_.解析PA平面ABC,AB,AC,BC平面ABC,PAAB,PAAC,PABC,则PAB,PAC为直角三角形.由BCAC,且ACPAA,BC平面PAC,从而BCPC,因此ABC,PBC也是直角三角形.答案47.如图所示,在四棱锥PABCD中,PA底面ABCD,且底面各边都相等,M是
94、PC上的一动点,当点M满足_时,平面MBD平面PCD(只要填写一个你认为正确的条件即可).解析由定理可知,BDPC.当DMPC(或BMPC)时,有PC平面MBD.又PC平面PCD,平面MBD平面PCD.答案DMPC(或BMPC等)8.(2016全国卷改编),是两个平面,m,n是两条直线.(1)如果m,n,那么m,n的位置关系是_;(2)如果mn,那么m与所成的角和n与所成的角的大小关系是_.解析(1)由线面平行的性质定理知存在直线l,nl,m,所以ml,所以mn.(2)因为mn,所以m与所成的角和n与所成的角相等.因为,所以n与所成的角和n与所成的角相等,所以m与所成的角和n与所成的角相等.答
95、案(1)垂直(2)相等三、解答题9.(2017青岛质检)如图,ABC和BCD所在平面互相垂直,且ABBCBD2,ABCDBC120,E,F,G分别为AC,DC,AD的中点.(1)求证:EF平面BCG;(2)求三棱锥DBCG的体积.(1)证明由已知得ABCDBC,因此ACDC.又G为AD的中点,所以CGAD.同理BGAD,又BGCGG,因此AD平面BCG.又EFAD,所以EF平面BCG.(2)解在平面ABC内,作AOBC,交CB的延长线于O,如图由平面ABC平面BCD,平面ABC平面BDCBC,AO平面ABC,知AO平面BDC.又G为AD中点,因此G到平面BDC的距离h是AO长度的一半.在AOB
96、中,AOABsin 60,所以VDBCGVGBCDSDBChBDBCsin 120.10.(2016北京卷)如图,在四棱锥PABCD中,PC平面ABCD,ABDC,DCAC.(1)求证:DC平面PAC;(2)求证:平面PAB平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA平面CEF?说明理由.(1)证明因为PC平面ABCD,所以PCDC.又因为ACDC,且PCACC,所以DC平面PAC.(2)证明因为ABDC,DCAC,所以ABAC.因为PC平面ABCD,所以PCAB.又因为PCACC,所以AB平面PAC.又AB平面PAB,所以平面PAB平面PAC.(3)解棱PB上存在点
97、F,使得PA平面CEF.理由如下:取PB的中点F,连接EF,CE,CF,又因为E为AB的中点,所以EFPA.又因为PA平面CEF,且EF平面CEF,所以PA平面CEF.能力提升题组(建议用时:25分钟)11.设m,n是两条不同的直线,是两个不同的平面.则下列说法正确的是()A.若mn,n,则mB.若m,则mC.若m,n,n,则mD.若mn,n,则m解析A中,由mn,n可得m或m与相交或m,错误;B中,由m,可得m或m与相交或m,错误;C中,由m,n可得mn,又n,所以m,正确;D中,由mn,n,可得m或m与相交或m,错误.答案C12.(2017诸暨调研)如图,在正方形ABCD中,E,F分别是B
98、C,CD的中点,沿AE,AF,EF把正方形折成一个四面体,使B,C,D三点重合,重合后的点记为P,P点在AEF内的射影为O,则下列说法正确的是()A.O是AEF的垂心 B.O是AEF的内心C.O是AEF的外心 D.O是AEF的重心解析由题意可知PA,PE,PF两两垂直,所以PA平面PEF,从而PAEF,而PO平面AEF,则POEF,因为POPAP,所以EF平面PAO,EFAO,同理可知AEFO,AFEO,O为AEF的垂心.答案A13.如图,已知六棱锥PABCDEF的底面是正六边形,PA平面ABC,PA2AB,则下列结论中:PBAE;平面ABC平面PBC;直线BC平面PAE;PDA45.其中正确
99、的有_(把所有正确的序号都填上).解析由PA平面ABC,AE平面ABC,得PAAE,又由正六边形的性质得AEAB,PAABA,得AE平面PAB,又PB平面PAB,AEPB,正确;又平面PAD平面ABC,平面ABC平面PBC不成立,错;由正六边形的性质得BCAD,又AD平面PAD,BC平面PAD,BC平面PAD,直线BC平面PAE也不成立,错;在RtPAD中,PAAD2AB,PDA45,正确.答案14.(2016四川卷)如图,在四棱锥PABCD中,PACD,ADBC,ADCPAB90,BCCDAD.(1)在平面PAD内找一点M,使得直线CM平面PAB,并说明理由.(2)证明:平面PAB平面PBD
100、.(1)解取棱AD的中点M(M平面PAD),点M即为所求的一个点,理由如下:因为ADBC,BCAD.所以BCAM,且BCAM.所以四边形AMCB是平行四边形,从而CMAB.又AB平面PAB.CM平面PAB.所以CM平面PAB.(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)(2)证明由已知,PAAB,PACD.因为ADBC,BCAD,所以直线AB与CD相交,所以PA平面ABCD.又BD平面ABCD,从而PABD.因为ADBC,BCAD,M为AD的中点,连接BM,所以BCMD,且BCMD.所以四边形BCDM是平行四边形,所以BMCDAD,所以BDAB.又ABAPA,所以BD平面PA
101、B.又BD平面PBD,所以平面PAB平面PBD.15.(2016浙江卷)如图,在三棱台ABCDEF中,平面BCFE平面ABC,ACB90,BEEFFC1,BC2,AC3.(1)求证:BF平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示,因为平面BCFE平面ABC,且ACBC,所以AC平面BCK,因此BFAC.又因为EFBC,BEEFFC1,BC2,所以BCK为等边三角形,且F为CK的中点,则BFCK.所以BF平面ACFD.(2)解由(1)知BF平面ACFD,所以BF平面ACK,所以BDF是直线BD与平面ACFD所成的角.在RtBF
102、D中,BF,DF,得cos BDF.所以,直线BD与平面ACFD所成角的余弦值为.第6讲空间向量及其运算最新考纲1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.知 识 梳 理1.空间向量的有关概念名称概念表示零向量模为0的向量0单位向量长度(模)为1的向量相等向量方向相同且模相等的向量ab相反向量方向相反且模相等的向量a的相反向量为a共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量ab共面向量平行于同一个平面的向量2.空间向
103、量中的有关定理(1)共线向量定理空间两个向量a(a0)与b共线的充要条件是存在实数,使得ba.推论如图所示,点P在l上的充要条件是ta其中a叫直线l的方向向量,tR,在l上取a,则可化为t或(1t)t.(2)共面向量定理共面向量定理的向量表达式:pxayb,其中x,yR,a,b为不共线向量,推论的表达式为xy或对空间任意一点O,有xy或xyz,其中xyz1.(3)空间向量基本定理如果向量e1,e2,e3是空间三个不共面的向量,a是空间任一向量,那么存在唯一一组实数1,2,3,使得a1e12e23e3,空间中不共面的三个向量e1,e2,e3叫作这个空间的一个基底.3.空间向量的数量积及运算律(1
104、)数量积及相关概念两向量的夹角已知两个非零向量a,b,在空间任取一点O,作a,b,则AOB叫做向量a与b的夹角,记作a,b,其范围是,若a,b,则称a与b互相垂直,记作ab.两向量的数量积已知空间两个非零向量a,b,则|a|b|cosa,b叫做向量a,b的数量积,记作ab,即ab|a|b|cosa,b.(2)空间向量数量积的运算律结合律:(a)b(ab);交换律:abba;分配律:a(bc)abac.4.空间向量的坐标表示及其应用设a(a1,a2,a3),b(b1,b2,b3).向量表示坐标表示数量积aba1b1a2b2a3b3共线ab(b0,R)a1b1,a2b2,a3b3垂直ab0(a0,
105、b0)a1b1a2b2a3b30模|a|夹角a,b(a0,b0)cosa,b诊 断 自 测1.判断正误(在括号内打“”或“”)(1)空间中任意两非零向量a,b共面()(2)对任意两个空间向量a,b,若ab0,则ab()(3)若a,b,c是空间的一个基底,则a,b,c中至多有一个零向量()(4)若ab0,则a,b是钝角()解析对于(2),因为0与任何向量数量积为0,所以(2)不正确;对于(3),若a,b,c中有一个是0,则a,b,c共面,所以(3)不正确;对于(4),若a,b,则ab0,故(4)不正确.答案(1)(2)(3)(4)2.在空间直角坐标系中,A(1,2,3),B(2,1,6),C(3
106、,2,1),D(4,3,0),则直线AB与CD的位置关系是()A.垂直 B.平行C.异面 D.相交但不垂直解析由题意得,(3,3,3),(1,1,1),3,与共线,又AB与CD没有公共点.ABCD.答案B3.(选修21P97A2改编)如图所示,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若a,b,1c,则下列向量中与相等的向量是()A.abc B.abcC.abc D.abc解析由题意,根据向量运算的几何运算法则,11()c(ba)abc.答案A4.已知a(2,3,1),b(4,2,x),且ab,则|b|_.解析ab2(4)321x0,x2,|b|2.答案25.O为空
107、间中任意一点,A,B,C三点不共线,且t,若P,A,B,C四点共面,则实数t_.解析P,A,B,C四点共面,t1,t.答案6.(2017浙江三市十二校联考)已知向量a(1,2,3),b(x,x2y2,y),并且a,b同向,则x_;y_.解析由题意知ab,则,可得把代入得x2x20,解得x2或x1.当x2时,y6;当x1时,y3.当时,b(2,4,6)2a,向量a与b反向,不符合题意,故舍去.当时,b(1,2,3)a,向量a与b同向,故答案13考点一空间向量的线性运算【例1】 如图所示,在空间几何体ABCDA1B1C1D1中,各面为平行四边形,设a,b,c,M,N,P分别是AA1,BC,C1D1
108、的中点,试用a,b,c表示以下各向量:(1);(2).解(1)因为P是C1D1的中点,所以aacacb.(2)因为M是AA1的中点,所以aabc.又ca,所以abc.规律方法(1)选定空间不共面的三个向量作基向量,这是用向量解决立体几何问题的基本要求.用已知基向量表示指定向量时,应结合已知和所求向量观察图形,将已知向量和未知向量转化至三角形或平行四边形中,然后利用三角形法则或平行四边形法则进行运算.(2)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们把这个法则称为向量加法的多边形法则.提醒空间向量的坐标运算类似于平面向量中的坐标运算.【训练1】 (2017上饶期中)
109、如图,三棱锥OABC中,M,N分别是AB,OC的中点,设a,b,c,用a,b,c表示,则()A.(abc)B.(abc)C.(abc)D.(abc)解析()()(abc).答案B考点二共线定理、共面定理的应用【例2】 已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,用向量方法求证:(1)E,F,G,H四点共面;(2)BD平面EFGH.证明(1)连接BG,则(),由共面向量定理知E,F,G,H四点共面.(2)因为(),因为E,H,B,D四点不共线,所以EHBD.又EH平面EFGH,BD平面EFGH,所以BD平面EFGH.规律方法(1)证明空间三点P,A,B共线的方法(
110、R);对空间任一点O,xy(xy1).(2)证明空间四点P,M,A,B共面的方法xy;对空间任一点O,xyz(xyz1);(或或).(3)三点共线通常转化为向量共线,四点共面通常转化为向量共面,线面平行可转化为向量共线、共面来证明.【训练2】 (1)若A(1,2,3),B(2,1,4),C(m,n,1)三点共线,则mn_.(2)已知空间四点A(2,0,2),B(1,1,2),C(3,0,4),D(1,2,t),若四点共面,则t的值为_.解析(1)(3,1,1),(m1,n2,2).A,B,C三点共线,m7,n4,mn3.(2)(1,1,0),(1,0,2),(3,2,t2),A,B,C,D四点
111、共面,共面.设xy,即(3,2,t2)(xy,x,2y),则解得t的值为0.答案(1)3(2)0考点三空间向量数量积的应用【例3】 如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M,N分别是AB,CD的中点.(1)求证:MNAB,MNCD;(2)求MN的长;(3)求异面直线AN与CM所成角的余弦值.(1)证明设p,q,r.由题意可知,|p|q|r|a,且p,q,r三向量两两夹角均为60.()(qrp),(qrp)p(qprpp2)(a2cos 60a2cos 60a2)0.,即MNAB.同理可证MNCD.(2)解由(1)可知(qrp),|2(qrp)22a2.|a.MN的长为a
112、.(3)解设向量与的夹角为.()(qr),qp,(qr)(qp)(q2qprqrp)(a2a2cos 60a2cos 60a2cos 60)(a2).又|a,|cos aacos .cos ,向量与的夹角的余弦值为,因此异面直线AN与CM所成角的余弦值为.规律方法利用数量积解决问题的两条途径:一是根据数量积的定义,利用模与夹角直接计算;二是利用坐标运算.可解决有关垂直、夹角、长度问题.(1)a0,b0,abab0;(2)|a|;(3)cosa,b.【训练3】 如图所示,四棱柱ABCDA1B1C1D1中,底面为平行四边形,以顶点A为端点的三条棱长都为1,且两两夹角为60.(1)求AC1的长;(2
113、)求证:AC1BD;(3)求BD1与AC夹角的余弦值.(1)解记a,b,c,则|a|b|c|1,a,bb,cc,a60,abbcca.|2(abc)2a2b2c22(abbcca)11126,|1|,即AC1的长为.(2)证明abc,ba,(abc)(ba)ab|b|2bc|a|2abacbcac|b|c|cos 60|a|c|cos 600.,AC1BD.(3)解bca,ab,|,|,(bca)(ab)b2a2acbc1.cos,.AC与BD1夹角的余弦值为.1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数
114、量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.其中合理选取基底是优化运算的关键.4.向量的运算有线性运算和数量积运算两大类,运算方法有两种,一种是建立空间坐标系,用坐标表示向量,向量运算转化为坐标运算,另一种是选择一组基向量,用基向量表示其它向量,向量运算转化为基向量的运算.1.在利用xy证明MN平面ABC时,必须说明M点或N点不在面ABC内(因为式只表示与,共面).2.求异面直线所成角,一般可转化为两向量夹角,但要注意两种角范围不同,注意两者关系,合理转化.3.找两个向量的夹角,
115、应使两个向量具有同一起点,不要误找成它的补角.4.ab0不等价为a,b为锐角,因为a,b可能为0.基础巩固题组(建议用时:40分钟)一、选择题1.(2017台州统考)已知向量a(2m1,3,m1),b(2,m,m),且ab,则实数m的值等于()A. B.2 C.0 D.或2解析ab,解得m2.答案B2.在正方体ABCDA1B1C1D1中,M,N分别为棱AA1和BB1的中点,则sin,的值为()A. B.C. D.解析如图,设正方体棱长为2,则易得(2,2,1),(2,2,1),cos,sin,.答案B3.空间四边形ABCD的各边和对角线均相等,E是BC的中点,那么()A.B.C.D.与的大小不
116、能比较解析取BD的中点F,连接EF,则EF綉CD,因为,90,因为0,0,所以.答案C4.已知向量a(1,1,0),b(1,0,2),且kab与2ab互相垂直,则k的值是()A.1 B. C. D.解析由题意得,kab(k1,k,2),2ab(3,2,2).所以(kab)(2ab)3(k1)2k225k70,解得k.答案D5.已知空间四边形ABCD的每条边和对角线的长都等于a,点E,F分别是BC,AD的中点,则的值为()A.a2 B.a2 C.a2 D.a2解析如图,设a,b,c,则|a|b|c|a,且a,b,c三向量两两夹角为60.(ab),c,(ab)c(acbc)(a2cos 60a2c
117、os 60)a2.答案C二、填空题6.已知2ab(0,5,10),c(1,2,2),ac4,|b|12,则以b,c为方向向量的两直线的夹角为_.解析由题意得,(2ab)c0102010.即2acbc10,又ac4,bc18,cosb,c,b,c120,两直线的夹角为60.答案607.(2017宁波十校联考)已知a(2,1,3),b(1,2,1),a与b夹角的余弦值为_;若a(ab),则_.解析a(2,1,3),b(1,2,1),cosa,b;由题意a(ab)0,即a2ab0,又a214,ab7,1470,2.答案28.(2017北京顺义一模)设A1,A2,A3,A4,A5是空间中给定的5个不同
118、的点,则使0成立的点M的个数有_.解析设M(a,b,c),Ak(xk,yk,zk)(k1,2,3,4,5).则(xka,ykb,zkc),由0得存在唯一点M.答案1三、解答题9.已知空间中三点A(2,0,2),B(1,1,2),C(3,0,4),设a,b.(1)若|c|3,且c,求向量c.(2)求向量a与向量b的夹角的余弦值.解(1)c,(3,0,4)(1,1,2)(2,1,2),cmm(2,1,2)(2m,m,2m),|c|3|m|3,m1.c(2,1,2)或(2,1,2).(2)a(1,1,0),b(1,0,2),ab(1,1,0)(1,0,2)1,又|a|,|b|,cosa,b,即向量a
119、与向量b的夹角的余弦值为.10.如图所示,在平面角为120的二面角AB中,AC,BD,且ACAB,BDAB,垂足分别为A,B.已知ACABBD6,求线段CD的长.解ACAB,BDAB,0,0.二面角AB的平面角为120,18012060,CD22()2222222362262cos 60144,CD12.能力提升题组(建议用时:25分钟)11.在空间四边形ABCD中,()A.1 B.0 C.1 D.不确定解析如图,令a,b,c,则a(cb)b(ac)c(ba)acabbabccbca0.答案B12.若a,b,c是空间的一个基底,且向量pxaybzc,则(x,y,z)叫向量p在基底a,b,c下的
120、坐标.已知a,b,c是空间的一个基底,ab,ab,c是空间的另一个基底,一向量p在基底a,b,c下的坐标为(4,2,3),则向量p在基底ab,ab,c下的坐标是()A.(4,0,3) B.(3,1,3)C.(1,2,3) D.(2,1,3)解析设p在基底ab,ab,c下的坐标为x,y,z.则px(ab)y(ab)zc(xy)a(xy)bzc,因为p在a,b,c下的坐标为(4,2,3),p4a2b3c,由得即p在ab,ab,c下的坐标为(3,1,3).答案B13.(2017郑州调研)已知O点为空间直角坐标系的原点,向量(1,2,3),(2,1,2),(1,1,2),且点Q在直线OP上运动,当取得
121、最小值时,的坐标是_.解析点Q在直线OP上,设点Q(,2),则(1,2,32),(2,1,22),(1)(2)(2)(1)(32)(22)6216106.即当时,取得最小值.此时.答案14.如图,在棱长为a的正方体OABCO1A1B1C1中,E,F分别是棱AB,BC上的动点,且AEBFx,其中0xa,以O为原点建立空间直角坐标系Oxyz.(1)写出点E,F的坐标;(2)求证:A1FC1E;(3)若A1,E,F,C1四点共面,求证:.(1)解E(a,x,0),F(ax,a,0).(2)证明A1(a,0,a),C1(0,a,a),(x,a,a),(a,xa,a),axa(xa)a20,A1FC1E
122、.(3)证明A1,E,F,C1四点共面,共面.选与为在平面A1C1E上的一组基向量,则存在唯一实数对(1,2),使12,即(x,a,a)1(a,a,0)2(0,x,a)(a1,a1x2,a2),解得1,21.于是.15.如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:(1);(2)EG的长;(3)异面直线AG与CE所成角的余弦值.解设a,b,c.则|a|b|c|1,a,bb,cc,a60,(1)ca,a,bc,(a)a2ac,(2)abacb abc,|2a2b2c2abbcca,则|.(3)bc,ba,cos,由于异面直线所成角的范
123、围是,所以异面直线AG与CE所成角的余弦值为.第7讲立体几何中的向量方法(一)证明平行与垂直最新考纲1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知 识 梳 理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l,取直线l的方向向量a,则向量a叫做平面的法向量.2.空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1l2n1n2n1n2l1l2
124、n1n2n1n20直线l的方向向量为n,平面的法向量为mlnmnm0lnmnm平面,的法向量分别为n,mnmnmnmnm0诊 断 自 测1.判断正误(在括号内打“”或“”)(1)直线的方向向量是唯一确定的.()(2)若两直线的方向向量不平行,则两直线不平行.()(3)若两平面的法向量平行,则两平面平行或重合.()(4)若空间向量a平行于平面,则a所在直线与平面平行.()答案(1)(2)(3)(4)2.(选修21P104练习2改编)已知平面,的法向量分别为n1(2,3,5),n2(3,1,4),则()A. B.C.,相交但不垂直 D.以上均不对解析n1n2,且n1n22(3)315(4)230,
125、不平行,也不垂直.答案C3.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是()A.(1,1,1) B.(1,1,1)C. D.解析设n(x,y,z)为平面ABC的法向量,则化简得xyz.答案C4.(2017青岛月考)所图所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是_.解析以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设|AD|2,则A(2,0,0),M(0,0,1),O(1,1,0),N(2,1,2),所以(2,0,1)
126、,(1,0,2),因此2020,故AMON.答案垂直5.(2017杭州调研)设直线l的方向向量为a,平面的法向量为n(2,2,4),若a(1,1,2),则直线l与平面的位置关系为_;若a(1,1,1),则直线l与平面的位置关系为_.解析当a(1,1,2)时,an,则l;当a(1,1,1)时,an(1,1,1)(2,2,4)0,则l或l.答案ll或l6.(2017绍兴月考)设,为两个不同的平面,u(2,2,5),v(1,1,x)分别为平面,的法向量.(1)若,则x_;(2)若,则x_.解析(1)由,得uv0,即225x0,x;(2)由,得uv,即,x.答案(1)(2)考点一利用空间向量证明平行问
127、题【例1】 如图,在四面体ABCD中,AD平面BCD,BCCD,AD2,BD2,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ3QC.证明:PQ平面BCD.证明法一如图,取BD的中点O,以O为原点,OD,OP所在射线分别为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知,A(0,2),B(0,0),D(0,0).设点C的坐标为(x0,y0,0).因为3,所以Q.因为M为AD的中点,故M(0,1).又P为BM的中点,故P,所以.又平面BCD的一个法向量为a(0,0,1),故a0.又PQ平面BCD,所以PQ平面BCD.法二在线段CD上取点F,使得DF3FC,连接OF,同法一建立空间
128、直角坐标系,写出点A,B,C的坐标,设点C坐标为(x0,y0,0).,设点F坐标为(x,y,0),则(xx0,yy0,0)(x0,y0,0),又由法一知,PQOF.又PQ平面BCD,OF平面BCD,PQ平面BCD.规律方法(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.【训练1】 如图所示,平面PAD平面ABCD,ABCD
129、为正方形,PAD是直角三角形,且PAAD2,E,F,G分别是线段PA,PD,CD的中点.求证:PB平面EFG.证明平面PAD平面ABCD,且ABCD为正方形,AB,AP,AD两两垂直.以A为坐标原点,建立如右图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).法一(0,1,0),(1,2,1),设平面EFG的法向量为n(x,y,z),则即令z1,则n(1,0,1)为平面EFG的一个法向量,(2,0,2),n0,n,PB平面EFG,PB平面EFG.法二(2,0,2),(0
130、,1,0),(1,1,1).设st,即(2,0,2)s(0,1,0)t(1,1,1),解得st2.22,又与不共线,与共面.PB平面EFG,PB平面EFG.考点二利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥PABCD的底面是直角梯形,ABCBCD90,ABBCPBPC2CD,侧面PBC底面ABCD.证明:(1)PABD;(2)平面PAD平面PAB.证明(1)取BC的中点O,连接PO,平面PBC底面ABCD,PBC为等边三角形,PO底面ABCD.以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP所在直线为z轴,建立空间直角坐标系,如图所示.不妨设CD1,
131、则ABBC2,PO.A(1,2,0),B(1,0,0),D(1,1,0),P(0,0,).(2,1,0),(1,2,).(2)1(1)(2)0()0,PABD.(2)取PA的中点M,连接DM,则M.,(1,0,),100()0,即DMPB.10(2)()0,即DMPA.又PAPBP,DM平面PAB.DM平面PAD,平面PAD平面PAB.规律方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)用向量证明垂直的方法线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.线面垂直:证明直线的方向向量与平面的
132、法向量共线,或将线面垂直的判定定理用向量表示.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.【训练2】 如图所示,正三棱柱(底面为正三角形的直三棱柱)ABCA1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1平面A1BD.证明法一设平面A1BD内的任意一条直线m的方向向量为m.由共面向量定理,则存在实数,使m.令a,b,c,显然它们不共面,并且|a|b|c|2,abac0,bc2,以它们为空间的一个基底,则ac,ab,ac,mabc,m(ac)4240.故m,故AB1平面A1BD.法二如图所示,取BC的中点O,连接AO.因为ABC为正三角形,所以AOBC.因为在
133、正三棱柱ABCA1B1C1中,平面ABC平面BCC1B1,所以AO平面BCC1B1.取B1C1的中点O1,以O为原点,分别以,所在直线为x轴,y轴,z轴建立空间直角坐标系,则B(1,0,0),D(1,1,0),A1(0,2,),A(0,0,),B1(1,2,0).设平面A1BD的法向量为n(x,y,z),(1,2,),(2,1,0).因为n,n,故令x1,则y2,z,故n(1,2,)为平面A1BD的一个法向量,而(1,2,),所以n,所以n,故AB1平面A1BD.考点三利用空间向量解决探索性问题【例3】 (2017湖州调研)如图,棱柱ABCDA1B1C1D1的所有棱长都等于2,ABC和A1AC
134、均为60,平面AA1C1C平面ABCD.(1)求证:BDAA1;(2)在直线CC1上是否存在点P,使BP平面DA1C1?若存在,求出点P的位置;若不存在,请说明理由.(1)证明设BD与AC交于点O,则BDAC,连接A1O,在AA1O中,AA12,AO1,A1AO60,A1O2AAAO22AA1AOcos 603,AO2A1O2AA,A1OAO.由于平面AA1C1C平面ABCD,平面AA1C1C平面ABCDAC,A1O平面AA1C1C,A1O平面ABCD,以OB,OC,OA1所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则A(0,1,0),B(,0,0),C(0,1,0),D(,
135、0,0),A1(0,0,),C1(0,2,).由于(2,0,0),(0,1,),0(2)1000,即BDAA1.(2)解假设在直线CC1上存在点P,使BP平面DA1C1,设,P(x,y,z),则(x,y1,z)(0,1,).从而有P(0,1,),(,1,).设n3平面DA1C1,则又(0,2,0),(,0,),设n3(x3,y3,z3),取n3(1,0,1),因为BP平面DA1C1,则n3,即n30,得1,即点P在C1C的延长线上,且C1CCP.规律方法向量法解决与垂直、平行有关的探索性问题(1)根据题目的已知条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出
136、结论.(2)假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.【训练3】 在四棱锥PABCD中,PD底面ABCD,底面ABCD为正方形,PDDC,E,F分别是AB,PB的中点.(1)求证:EFCD;(2)在平面PAD内是否存在一点G,使GF平面PCB?若存在,求出点G坐标;若不存在,试说明理由.(1)证明由题意知,DA,DC,DP两两垂直.如图,以DA,DC,DP所在直线分别为x轴,y轴,z轴建立空间直角坐标系,设ADa,则D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,
137、0),E,P(0,0,a),F.,(0,a,0).0,从而得EFCD.(2)解假设存在满足条件的点G,设G(x,0,z),则,若使GF平面PCB,则由(a,0,0)a0,得x;由(0,a,a)a0,得z0.G点坐标为,即存在满足条件的点G,且点G为AD的中点.1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(
138、1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线ab,只需证明向量ab(R)即可.若用直线的方向向量与平面的法向量垂直来证明线
139、面平行,仍需强调直线在平面外.2.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.基础巩固题组(建议用时:40分钟)一、选择题1.若直线l的方向向量为a(1,0,2),平面的法向量为n(2,0,4),则()A.l B.lC.l D.l与相交解析n2a,a与平面的法向量平行,l.答案B2.若,则直线AB与平面CDE的位置关系是()A.相交 B.平行C.在平面内 D.平行或在平面内解析,共面.则AB与平面CDE的位置关系是平行或在平面内.答案D3.已知平面内有一点M(1,1,2),平面的一个法向量为n(6,3,6),则下列点P中,在平面内的是()A.P
140、(2,3,3) B.P(2,0,1)C.P(4,4,0) D.P(3,3,4)解析逐一验证法,对于选项A,(1,4,1),n61260,n,点P在平面内,同理可验证其他三个点不在平面内.答案A4.(2017西安月考)如图,F是正方体ABCDA1B1C1D1的棱CD的中点.E是BB1上一点,若D1FDE,则有()A.B1EEBB.B1E2EBC.B1EEBD.E与B重合解析分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方形的边长为2,则D(0,0,0),F(0,1,0),D1(0,0,2),设E(2,2,z),(0,1,2),(2,2,z),02122z0,z1,B1EEB.答案
141、A5.如图所示,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:A1MD1P;A1MB1Q;A1M平面DCC1D1;A1M平面D1PQB1.以上说法正确的个数为()A.1 B.2C.3 D.4解析,所以A1MD1P,由线面平行的判定定理可知,A1M平面DCC1D1,A1M平面D1PQB1.正确.答案C二、填空题6.(2017舟山质检)已知平面内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面的一个法向量n(1,1,1),则不重合的两个平面与的位置关系是_.解析设平面的法向量为m(x,y,z),由m0,得x0yz
142、0yz,由m0,得xz0xz,取x1,m(1,1,1),mn,mn,.答案7.(2017温州质检)已知(1,5,2),(3,1,z),若,(x1,y,3),且BP平面ABC,则x_,y_,z_.解析由条件得解得x,y,z4.答案48.已知点P是平行四边形ABCD所在的平面外一点,如果(2,1,4),(4,2,0),(1,2,1).对于结论:APAB;APAD;是平面ABCD的法向量;.其中正确的序号是_.解析0,0,ABAP,ADAP,则正确.又与不平行,是平面ABCD的法向量,则正确.由于(2,3,4),(1,2,1),与不平行,故错误.答案三、解答题9.如图,四边形ABCD为正方形,PD平
143、面ABCD,PDQA,QAABPD.证明:平面PQC平面DCQ.证明如图,以D为坐标原点,线段DA的长为单位长,射线DA,DP,DC分别为x轴,y轴,z轴的正半轴建立空间直角坐标系Dxyz.依题意有Q(1,1,0),C(0,0,1),P(0,2,0),则(1,1,0),(0,0,1),(1,1,0).0,0.即PQDQ,PQDC,又DQDCD,PQ平面DCQ,又PQ平面PQC,平面PQC平面DCQ.10.(2017义乌调研)如图所示,四棱锥PABCD的底面是边长为1的正方形,PACD,PA1,PD,E为PD上一点,PE2ED.(1)求证:PA平面ABCD;(2)在侧棱PC上是否存在一点F,使得
144、BF平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.(1)证明PAAD1,PD,PA2AD2PD2,即PAAD.又PACD,ADCDD,PA平面ABCD.(2)解以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),E,(1,1,0),.设平面AEC的法向量为n(x,y,z),则即令y1,则n(1,1,2).假设侧棱PC上存在一点F,且(01),使得BF平面AEC,则n0.又(0,1,0)(,)(,1,),n120,存在点F,使得BF平面AEC,且F为PC的中点.能力提升题组(建议
145、用时:25分钟)11.如图,正方形ABCD与矩形ACEF所在平面互相垂直,AB,AF1,M在EF上,且AM平面BDE.则M点的坐标为()A.(1,1,1) B.C. D.解析设AC与BD相交于O点,连接OE,由AM平面BDE,且AM平面ACEF,平面ACEF平面BDEOE,AMEO,又O是正方形ABCD对角线交点,M为线段EF的中点.在空间坐标系中,E(0,0,1),F(,1).由中点坐标公式,知点M的坐标.答案C12.(2017成都调研)如图所示,在正方体ABCDA1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1MAN,则MN与平面BB1C1C的位置关系是()A.相交 B.平
146、行C.垂直 D.不能确定解析分别以C1B1,C1D1,C1C所在直线为x,y,z轴,建立空间直角坐标系,如图,A1MANa,则M,N,.又C1(0,0,0),D1(0,a,0),(0,a,0),0,.是平面BB1C1C的法向量,且MN平面BB1C1C,MN平面BB1C1C.答案B13.如图,正方体ABCDA1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E平面ABF,则CE与DF的和的值为_.解析以D1A1,D1C1,D1D分别为x,y,z轴建立空间直角坐标系,设CEx,DFy,则易知E(x,1,1),B1(1,1,0),F(0,0,1y),B(1,1,1),(x1,0,1
147、),(1,1,y),由于B1E平面ABF,所以(1,1,y)(x1,0,1)0xy1.答案114.(2017杭州调研)如图,在六面体ABCDA1B1C1D1中,四边形ABCD是边长为2的正方形,四边形A1B1C1D1是边长为1的正方形,DD1平面A1B1C1D1,DD1平面ABCD,DD12.求证:(1)A1C1与AC共面,B1D1与BD共面;(2)平面A1ACC1平面B1BDD1.证明以D为坐标原点,建立如图所示的空间直角坐标系Dxyz,则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(1,0,2),B1(1,1,2),C1(0,1,2),D1(0,0,2).(
148、1)(1,1,0),(2,2,0),(1,1,0),(2,2,0),2,2,于是A1C1与AC共面,B1D1与BD共面.(2)(0,0,2)(2,2,0)0,(2,2,0)(2,2,0)0,.又DD1与DB是平面B1BDD1内的两条相交直线,AC平面B1BDD1.又AC平面A1ACC1,平面A1ACC1平面B1BDD1.15.(2014湖北卷改编)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DPBQ(02).(1)当1时,证明:直线BC1平面EFPQ;(2)是否存在,使平面EFPQ平面P
149、QMN?若存在,求出实数的值;若不存在,说明理由.(1)证明以D为坐标原点,建立如图所示的空间直角坐标系.由已知得B(2,2,0),C1(0,2,2),E(2,1,0),F(1,0,0),P(0,0,),M(2,1,2),N(1,0,2),(2,0,2),(1,0,),(1,1,0),(1,1,0),(1,0,2).当1时,(1,0,1),因为(2,0,2),所以2,即BC1FP.而FP平面EFPQ,且BC1平面EFPQ,故直线BC1平面EFPQ.(2)解设平面EFPQ的一个法向量为n(x,y,z),则由可得于是可取n(,1).同理可得平面PQMN的一个法向量为m(2,2,1).则mn(2,2
150、,1)(,1)0,即(2)(2)10,解得1.故存在1,使平面EFPQ平面PQMN.第8讲立体几何中的向量方法(二)求空间角最新考纲1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.知 识 梳 理1.异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则a与b的夹角l1与l2所成的角范围(0,)求法cos cos |cos |2.求直线与平面所成的角设直线l的方向向量为a,平面的法向量为n,直线l与平面所成的角为,则sin |cosa,n|.3.求二面角的大小(1)如图,AB,CD是二面角l的两个面内与棱l垂直的直线,
151、则二面角的大小_,.(2)如图,n1,n2 分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos |cosn1,n2|,二面角的平面角大小是向量n1与n2的夹角(或其补角).诊 断 自 测1.判断正误(在括号内打“”或“”)(1)两直线的方向向量所成的角就是两条直线所成的角.()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(3)两个平面的法向量所成的角是这两个平面所成的角.()(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是.()答案(1)(2)(3)(4)2.(选修21P104练习2改编)已知两平面的法向量分别为m(0,1,0),n
152、(0,1,1),则两平面所成的二面角为()A.45 B.135C.45或135 D.90解析cosm,n,即m,n45.两平面所成二面角为45或18045135.答案C3.(2014全国卷)在直三棱柱 ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A. B.C. D.解析建立如图所示的空间直角坐标系Cxyz,设BC2,则B(0,2,0),A(2,0,0),M(1,1,2),N(1,0,2),所以(1,1,2),(1,0,2),故BM与AN所成角的余弦值cos .答案C4.正方体ABCDA1B1C1D1的棱长为a,点M在A
153、C1上且1,N为B1B的中点,则|为()A.a B.aC.a D.a解析以D为原点建立如图所示的空间直角坐标系Dxyz,则A( a,0,0),C1(0,a,a),N.设M(x,y,z),点M在AC1上且1,(xa,y,z)(x,ay,az)xa,y,z.得M,|a.答案A5.已知向量m,n分别是直线l和平面的方向向量和法向量,若 cosm,n,则l与所成的角为_.解析设l与所成角为,cosm,n, sin | cosm,n|,090,30.答案306.(2017郑州预测)过正方形ABCD的顶点A作线段PA平面ABCD,若ABPA,则平面ABP与平面CDP所成的二面角为_.解析如图,建立空间直角
154、坐标系,设ABPA1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,AD平面PAB,设E为PD的中点,连接AE,则AEPD,又CD平面PAD,CDAE,从而AE平面PCD.所以(0,1,0),分别是平面PAB,平面PCD的法向量,且,45.故平面PAB与平面PCD所成的二面角为45.答案45考点一利用空间向量求异面直线所成的角【例1】 如图,在四棱锥PABCD中,底面ABCD是矩形,PA底面ABCD,E是PC的中点.已知AB2,AD2,PA2.求:(1)PCD的面积.(2)异面直线BC与AE所成的角的大小.解(1)因为PA底面ABCD,CD平面ABCD,所以PACD.又ADC
155、D,PAADA,所以CD平面PAD,又PD平面PAD,从而CDPD.因为PD2,CD2,所以PCD的面积为222. (2)法一如图1,取PB中点F,连接EF,AF,则EFBC,从而AEF(或其补角)是异面直线BC与AE所成的角.图1在AEF中,由于EF,AF,AEPC2.所以AF2EF2AE2,AFE90,则AEF是等腰直角三角形,所以AEF.因此,异面直线BC与AE所成的角的大小是.法二如图2,建立空间直角坐标系,则B(2,0,0),C(2,2,0),E(1,1),(1, ,1),(0,2,0).图2设与的夹角为,则cos ,所以.由此可知,异面直线BC与AE所成的角的大小是.规律方法(1)
156、利用向量法求异面直线所成角的一般步骤是:选好基底或建立空间直角坐标系;求出两直线的方向向量v1,v2;代入公式|cosv1,v2|求解.(2)两异面直线所成角的范围是,两向量的夹角的范围是,当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.【训练1】 (2016上海卷)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥CO1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.解(1)连接A1B1,因为,O1A1B1A1O1
157、B1,O1A1B1为正三角形,SO1A1B1O1A1O1B1sin 60.VCO1A1B1OO1SO1A1B11,三棱锥CO1A1B1的体积为.(2)以O为坐标原点建系如图,则A(0,1,0),A1(0,1,1),B1,C.(0,0,1),(0,1,1),cos,异面直线B1C与AA1所成的角为.考点二利用空间向量求直线与平面所成的角【例2】 (2016全国卷)如图,四棱锥PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4,M为线段AD上一点,AM2MD,N为PC的中点.(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值.(1)证明由已知得AMAD2.取BP
158、的中点T,连接AT,TN,由N为PC中点知TNBC,TNBC2.又ADBC,故TN綉AM,所以四边形AMNT为平行四边形,于是MNAT.因为AT平面PAB,MN平面PAB,所以MN平面PAB.(2)解取BC的中点E,连接AE.由ABAC得AEBC,从而AEAD,且AE.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Axyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,(0,2,4),.设n(x,y,z)为平面PMN的法向量,则即可取n(0,2,1).于是|cosn,|.所以直线AN与平面PMN所成的角的正弦值为.规律方法利用向量法求线面角的方法:(1)分
159、别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.【训练2】 (2017福州质检)如图,三棱柱ABCA1B1C1中,底面ABC为等腰直角三角形,ABAC1,BB12,ABB160.(1)证明:ABB1C;(2)若B1C2,求AC1与平面BCB1所成角的正弦值.(1)证明连接AB1,在ABB1中,AB1,BB12,ABB160,由余弦定理得,ABAB2BB2ABBB1cosABB13,AB1,BBAB2AB,AB1AB.又ABC为等腰直角三角形,
160、且ABAC,ACAB,ACAB1A,AB平面AB1C.又B1C平面AB1C,ABB1C.(2)解AB1,ABAC1,B1C2,B1C2ABAC2,AB1AC.如图,以A为原点,以,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,0),B1(0,0,),B(1,0,0),C(0,1,0),(1,0,),(1,1,0).设平面BCB1的一个法向量为n(x,y,z),由得令z1,得xy,平面BCB1的一个法向量为n(,1).(0,1,0)(1,0,)(1,1,),cos,n,AC1与平面BCB1所成角的正弦值为.考点三利用空间向量求二面角(易错警示)【例3】 (2017金丽衢十
161、二校联考)如图,在三棱柱ABCA1B1C1中,B1BB1AABBC,B1BC90,D为AC的中点,ABB1D.(1)求证:平面ABB1A1平面ABC;(2)求直线B1D与平面ACC1A1所成角的正弦值;(3)求二面角BB1DC的余弦值.(1)证明取AB中点为O,连接OD,OB1,B1BB1A,OB1AB.又ABB1D,OB1B1DB1,AB平面B1OD,OD平面B1OD,ABOD.B1BC90,即BCBB1,又ODBC,ODBB1,又ABBB1B,OD平面ABB1A1,又OD平面ABC,平面ABC平面ABB1A1.(2)解由(1)知,OB,OD,OB1两两垂直.以O为坐标原点,的方向为x轴的方
162、向,|为单位长度1,建立如图所示的空间直角坐标系Oxyz.由题设知B1(0,0,),D(0,1,0),A(1,0,0),C(1,2,0),C1(0,2,).则(0,1,),(2,2,0),(1,0,).设平面ACC1A1的一个法向量为m(x,y,z),则由得可取m(,1).cos,m,直线B1D与平面ACC1A1所成角的正弦值为.(3)解由题设知B(1,0,0),则(1,1,0),(0,1,),(1,1,0).设平面BB1D的一个法向量为n1(x1,y1,z1),则由得可取n1(,1).同理可得平面B1DC的一个法向量为n2(,1),cosn1,n2.二面角BB1DC的余弦值为.规律方法利用向
163、量计算二面角大小的常用方法:(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.易错警示对于:用线面垂直的判定定理易忽视面内两直线相交;对于:建立空间直角坐标系,若垂直关系不明确时,应先给出证明;对于:线面角的正弦sin |cos,m|,易误认为cos |cos,m|;对于:求出法向量夹角的余弦值后,不清楚二面角的余弦值取正值还是负值,确定二面角余弦值正负有两种方法
164、:1通过观察二面角是锐角还是钝角来确定其余弦值的正负;2当不易观察二面角是锐角还是钝角时可判断两半平面的法向量与二面角的位置关系来确定.【训练3】 (2017浙江五校联考)如图,在四棱锥PABCD中,侧面PAB底面ABCD,底面ABCD为矩形,PAPB,O为AB的中点,ODPC.(1)求证:OCPD;(2)若PD与平面PAB所成的角为30,求二面角DPCB的余弦值.(1)证明如图,连接OP.PAPB,O为AB的中点,OPAB.侧面PAB底面ABCD,OP平面ABCD,OPOD,OPOC.ODPC,OD平面OPC,ODOC,又OPOC,OPODO,OC平面OPD,OCPD.(2)解法一在矩形AB
165、CD中,由(1)得ODOC,AB2AD,不妨设AD1,则AB2.侧面PAB底面ABCD,底面ABCD为矩形,DA平面PAB,CB平面PAB,DPACPB,DPA为直线PD与平面PAB所成的角,DPA30,CPB30,PAPB,DPCP2,PDC为等边三角形.设PC的中点为M,连接DM,则DMPC.在RtCBP中,过M作NMPC,交PB于点N,连接ND,则DMN为二面角DPCB的一个平面角.由于CPB30,PM1,故在RtPMN中,MN,PN.cosAPB,AN2323,ND2314,cosDMN,即二面角DPCB的余弦值为.法二取CD的中点E,以O为原点,OE,OB,OP所在的直线分别为x,y
166、,z轴建立空间直角坐标系Oxyz.在矩形ABCD中,由(1)得ODOC,AB2AD,不妨设AD1,则AB2.侧面PAB底面ABCD,底面ABCD为矩形,DA平面PAB,CB平面PAB,DPACPB,DPA为直线PD与平面PAB所成的角,DPA30,CPB30,PAPB,B(0,1,0),C(1,1,0),D(1,1,0),P(0,0,),从而(1,1,),(0,2,0).设平面PCD的法向量为n1(x1,y1,z1),由得可取n1(,0,1).同理,可取平面PCB的一个法向量为n2(0,1).于是cosn1,n2,二面角DPCB的余弦值为.1.利用空间向量求空间角,避免了寻找平面角和垂线段等诸
167、多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2.合理建立空间直角坐标系(1)使用空间向量解决立体几何问题的关键环节之一就是建立空间直角坐标系,建系方法的不同可能导致解题的简繁程度不同.(2)一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系;如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点.(3)建系的基本思想是寻找其中的线线垂直关系,在没有现成的垂直关系时要通过其他已
168、知条件得到垂直关系,在此基础上选择一个合理的位置建立空间直角坐标系.1.异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角.2.线面角的正弦值等于直线的方向向量a与平面的法向量n所成角的余弦值的绝对值,即sin |cosa,n|,不要误记为cos |cosa,n|.3.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面,的法向量n1,n2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n1,n2的夹角是相等,还是互补.基础巩固题组(建议用时:40分钟)一、选择题1.(201
169、6台州调研)在正方体A1B1C1D1ABCD中,AC与B1D所成的角的大小为()A. B. C. D.解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0).(1,1,0),(1,1,1),1(1)110(1)0,AC与B1D所成的角为.答案D2.(2017郑州调研)在正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A. B. C. D.解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如图所示.则B(1,1,0),B1(1,1,1),A
170、(1,0,0),C(0,1,0),D1(0,0,1),所以(0,0,1),(1,1,0),(1,0,1).令平面ACD1的法向量为n(x,y,z),则nxy0,nxz0,令x1,可得n(1,1,1),所以sin |cosn,|.答案B3.在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A. B. C. D.解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为1,则A1(0,0,1),E,D(0,1,0),(0,1,1),设平面A1ED的一个法向量为n1(1,y,z),所以有即解得n1(1,2,2).平面ABCD的一个法向量
171、为n2(0,0,1), cosn1,n2.即所成的锐二面角的余弦值为.答案B4.(2017西安调研)已知六面体ABCA1B1C1是各棱长均等于a的正三棱柱,D是侧棱CC1的中点,则直线CC1与平面AB1D所成的角为()A.45 B.60C.90 D.30解析如图所示,取AC的中点N,以N为坐标原点,建立空间直角坐标系.则A,C,B1,D,C1,(0,0,a).设平面AB1D的法向量为n(x,y,z),由n0,n0,可取n(,1,2).cos,n,直线CC1与平面AB1D所成的角为45.答案A5.设正方体ABCDA1B1C1D1的棱长为2,则点D1到平面A1BD的距离是()A. B.C. D.解
172、析如图建立坐标系.则D1(0,0,2),A1(2,0,2),B(2,2,0),(2,0,0),(2,2,0),设平面A1BD的一个法向量n(x,y,z),则令z1,得n(1,1,1).D1到平面A1BD的距离d.答案D二、填空题6.在正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于_.解析以D为坐标原点,建立空间直角坐标系,如图.设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2).设平面BDC1的一个法向量为n(x,y,z),则n,n,所以有令y2,得平面BDC1
173、的一个法向量为n (2,2,1).设CD与平面BDC1所成的角为,则sin |cosn,|.答案7.(2017温州月考)如图所示,在三棱柱ABCA1B1C1中,AA1底面ABC,ABBCAA1,ABC90,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角大小为_;直线EF与底面ABC所成角的大小为_.解析以BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系.设ABBCAA12,则C1(2,0,2),E(0,1,0),F(0,0,1),则(0,1,1),(2,0,2),2,cos,EF和BC1所成的角为60;FB平面ABC,BFBE1,FEB为直线EF与底面ABC的夹角且为4
174、5.答案60458.已知点E,F分别在正方体ABCDA1B1C1D1的棱BB1,CC1上,且B1E2EB,CF2FC1,则平面AEF与平面ABC所成的二面角的正切值等于_.解析延长FE,CB相交于点G,连接AG,如图所示.设正方体的棱长为3,则GBBC3,作BHAG于点H,连接EH,则EHB为所求二面角的平面角.BH,EB1,tanEHB.答案三、解答题9.(2015全国卷)如图,四边形ABCD为菱形,ABC120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC.(1)证明:平面AEC平面AFC,(2)求直线AE与直线CF所成角的余弦值.(1)证明如
175、图,连接BD,设BDACG,连接EG,FG,EF.在菱形ABCD中,不妨设GB1.由ABC120,可得AGGC.由BE平面ABCD,ABBC,可知AEEC.又AEEC,所以EG,且EGAC.在Rt EBG中,可得BE,故DF.在Rt FDG中,可得FG.在直角梯形BDFE中,由BD2,BE,DF,可得EF,从而EG2FG2EF2,所以EGFG.又ACFGG,可得EG平面AFC.因为EG平面AEC,所以平面AEC平面AFC.(2)解如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,|为单位长度,建立空间直角坐标系Gxyz,由(1)可得A(0,0),E(1,0,),F,C(0,0),所以(1
176、,),.故cos,.所以直线AE与直线CF所成角的余弦值为.10.(2016全国卷)如图,在以A,B,C,D,E,F为顶点的五面体中,平面ABEF为正方形,AF2FD,AFD90,且二面角DAFE与二面角CBEF都是60.(1)证明:平面ABEF平面EFDC;(2)求二面角EBCA的余弦值.(1)证明由已知可得AFDF,AFFE,所以AF平面EFDC,又AF平面ABEF,故平面ABEF平面EFDC.(2)解过D作DGEF,垂足为G,由(1)知DG平面ABEF.以G为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系Gxyz.由(1)知DFE为二面角DAFE的平面角,故DFE
177、60,则|DF|2,|DG|,可得A(1,4,0),B(3,4,0),E(3,0,0),D(0,0,).由已知,ABEF,所以AB平面EFDC,又平面ABCD平面EFDCCD,故ABCD,CDEF,由BEAF,可得BE平面EFDC,所以CEF为二面角CBEF的平面角,CEF60,从而可得C(2,0,).所以(1,0,),(0,4,0),(3,4,),(4,0,0).设n(x,y,z)是平面BCE的一个法向量,则即所以可取n(3,0,).设m是平面ABCD的一个法向量,则同理可取m(0,4),则cosn,m.故二面角EBCA的余弦值为.能力提升题组(建议用时:25分钟)11.(2017济南质检)
178、如图所示,在空间直角坐标系中有直三棱柱ABCA1B1C1,CACC12CB,则直线BC1与直线AB1夹角的余弦值为()A. B. C. D.解析不妨令CB1,则CACC12,可得O(0,0,0),B(0,0,1),C1(0,2,0),A(2,0,0),B1(0,2,1),(0,2,1),(2,2,1),cos,0.与的夹角即为直线BC1与直线AB1的夹角,直线BC1与直线AB1夹角的余弦值为.答案A12.在正四棱锥SABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且 SOOD,则直线BC与平面PAC所成的角是()A.30 B.45 C.60 D.90解析如图,以O为原点建立空间直角坐标
179、系Oxyz.设ODSOOAOBOCa.则A(a,0,0),B(0,a,0),C(a,0,0),P.则(2a,0,0),(a,a,0),设平面PAC的一个法向量为n(x,y,z),则解得可取n(0,1,1),则 cos,n,又,n(0,180),n60,直线BC与平面PAC所成的角为906030.答案A13.(2016浙江卷)如图,已知平面四边形ABCD,ABBC3,CD1,AD,ADC90,沿直线AC将ACD翻折成ACD,直线AC与BD所成角的余弦的最大值是_.解析设直线AC与BD所成角为,平面ACD翻折的角度为,设O是AC中点,由已知得AC,如图,以OB为x轴,OA为y轴,过O与平面ABC垂
180、直的直线为z轴,建立空间直角坐标系,则A,B,C,作DHAC于H,翻折过程中,DH始终与AC垂直,CH,则OH,DH,因此可设D,则,与平行的单位向量为n(0,1,0),所以cos |cos,n|,所以cos 1时,cos 取最大值.答案14.(2016四川卷)如图,在四棱锥PABCD中,ADBC,ADCPAB90,BCCDAD.E为棱AD的中点,异面直线PA与CD所成的角为90.(1)在平面PAB内找一点M,使得直线CM平面PBE,并说明理由;(2)若二面角PCDA的大小为45,求直线PA与平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M平
181、面PAB),点M即为所求的一个点.理由如下:由已知,知BCED,且BCED.所以四边形BCDE是平行四边形.从而CMEB.又EB平面PBE,CM平面PBE,所以CM平面PBE.(说明:延长AP至点N,使得APPN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CDPA,CDAD,PAADA,所以CD平面PAD.从而CDPD.所以PDA是二面角PCDA的平面角.所以PDA45.设BC1,则在RtPAD中,PAAD2.过点A作AHCE,交CE的延长线于点H,连接PH.易知PA平面ABCD,从而PACE.于是CE平面PAH.所以平面PCE平面PAH.过A作AQPH于Q,则AQ平面PCE.所以
182、APH是PA与平面PCE所成的角.在RtAEH中,AEH45,AE1,所以AH.在RtPAH中,PH,所以sinAPH.所以直线PA与平面PCE所成角的正弦值为.法二由已知,CDPA,CDAD,PAADA,所以CD平面PAD.于是CDPD.从而PDA是二面角PCDA的平面角.所以PDA45.由PAAB,可得PA平面ABCD.设BC1,则在RtPAD中,PAAD2.作AyAD,以A为原点,以,的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),所以(1,0,2),(1,1,0),(0,0,2),设平面PC
183、E的一个法向量为n(x,y,z),由得设x2,解得n(2,2,1).设直线PA与平面PCE所成角为,则sin .所以直线PA与平面PCE所成角的正弦值为.15.(2016浙江卷)如图,在三棱台ABCDEF中,平面BCFE平面ABC,ACB90,BEEFFC1,BC2,AC3.(1)求证:BF平面ACFD;(2)求二面角BADF的平面角的余弦值.(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE平面ABC,且ACBC,所以,AC平面BCK,因此BFAC.又因为EFBC,BEEFFC1,BC2,所以BCK为等边三角形,且F为CK的中点,则BFCK,且CKACC,所以BF平面AC
184、FD.(2)解法一过点F作FQAK于Q,连接BQ.因为BF平面ACK,所以BFAK,则AK平面BQF,所以BQAK.所以BQF是二面角BADF的平面角.在RtACK中,AC3,CK2,得FQ.在RtBQF中,FQ,BF,得cosBQF.所以,二面角BADF的平面角的余弦值为.法二如图,延长AD,BE,CF相交于一点K,则BCK为等边三角形.取BC的中点O,则KOBC,又平面BCFE平面ABC,所以KO平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z轴的正方向,建立空间直角坐标系Oxyz.由题意得B(1,0,0),C(1,0,0),K(0,0,),A(1,3,0),E,F.因此,(0
185、,3,0),(1,3,),(2,3,0).设平面ACK的法向量为m(x1,y1,z1),平面ABK的法向量为n(x2,y2,z2).由得取m(,0,1);由得取n(3,2,).于是,cosm,n.所以,二面角BADF的平面角的余弦值为.高考导航1.立体几何是高考的重要内容,每年都有选择题或填空题或解答题考查.小题主要考查学生的空间观念,空间想象能力及简单计算能力.解答题主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再利用空间向量进行空间角的计算.重在考查学生的逻辑推理能力及计算能力.热点题型主要有平面图形的翻折、探索性问题等;2.思想方
186、法:(1)转化与化归(空间问题转化为平面问题);(2)数形结合(根据空间位置关系利用向量转化为代数运算).热点一空间点、线、面的位置关系及空间角的计算(规范解答)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】 (满分12分)(2017湖州模拟)如图,在ABC中,ABC,O为AB边上一点,且3OB3OC2AB,已知PO平面ABC,2DA2AOPO,且DAPO.(1)求证:平面PBD平面COD;(2)求直线PD与平面BDC所成角的正弦值.满分解答(1)证明
187、OBOC,又ABC,OCB,BOC.COAB.2分又PO平面ABC,OC平面ABC,POOC.又PO,AB平面PAB,POABO,CO平面PAB,即CO平面PDB.4分又CO平面COD,平面PDB平面COD.6分(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA1,则POOBOC2,DA1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,1,1),(0,1,1),(2,2,0),(0,3,1).8分设平面BDC的一个法向量为n(x,y,z),令y1,则x1,z3,n(1,1,3).10分设PD与平面BDC所成的角为,则sin .即直线PD
188、与平面BDC所成角的正弦值为.12分得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,先证线面垂直,再证两面垂直.得关键分:解题过程不可忽视的关键点,有则给分,无则没分,如第(1)问中证线面垂直不可漏“CO平面PDB”.得计算分:解题过程中计算准确是得满分的根本保证.如第(2)问中求法向量n,计算线面角正弦值sin . 利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【训练1】 如
189、图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EFB1C.(2)求二面角EA1DB1的余弦值.(1)证明由正方形的性质可知A1B1ABDC,且A1B1ABDC,所以四边形A1B1CD为平行四边形,从而B1CA1D,又A1D面A1DE,B1C面A1DE,于是B1C面A1DE.又B1C面B1CD1,面A1DE面B1CD1EF,所以EFB1C.(2)解因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1AB,AA1AD,ABAD且AA1ABAD.以A为原点,分别以,为x轴
190、,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1(r1,s1,t1),而该面上向量,(0,1,1),由n1,n1得(1,1,1)为其一组解,所以可取n1(1,1,1).设平面A1B1CD的一个法向量n2(r2,s2,t2),而该面上向量(1,0,0),(0,1,1),由此同理可得n2(0,1,1).则cosn1,n2.所以二面角EA1DB1的余弦值为.热点二立体几何中的探索性问题此类试题一般以解
191、答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】 (2016北京卷)如图,在四棱锥PABCD中,平面PAD平面ABCD,PAPD,PAPD,ABAD,AB1,AD2,ACCD.(1)求证:PD平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM平面PCD?若存在,求的值;若不存在,说明理由.(1)证明因为平面PAD平面ABCD,平面PAD平面ABCDAD,ABAD,所以AB平
192、面PAD,所以ABPD.又PAPD,ABPAA,所以PD平面PAB.(2)解取AD的中点O,连接PO,CO.因为PAPD,所以POAD.因为PO平面PAD,平面PAD平面ABCD,所以PO平面ABCD.因为CO平面ABCD,所以POCO.因为ACCD,所以COAD.如图,建立空间直角坐标系Oxyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,1,0),P(0,0,1).设平面PCD的一个法向量为n(x,y,z),则即令z2,则x1,y2.所以n(1,2,2).又(1,1,1),所以cosn,.所以直线PB与平面PCD所成角的正弦值为.(3)解设M是棱PA上一点,则存
193、在,使得.因此点M(0,1,),(1,).因为BM平面PCD,所以要使BM平面PCD,则n0,即(1,)(1,2,2)0,解得.所以在棱PA上存在点M,使得BM平面PCD,此时.探究提高(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【训练2】 (2015天津卷改编)在四棱柱ABCDA1B1C1D1中,侧棱A1A底面ABCD,ABAC,AB1,ACAA12,ADCD,且点M和N分别为B1C和D1D的中
194、点.(1)求证:MN平面ABCD;(2)求二面角D1ACB1的正弦值;(3)在棱A1B1上是否存在点E,使得直线NE与平面ABCD所成角的正弦值为?若存在,求出线段A1E的长;若不存在,请说明理由.解如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0),C(2,0,0),D(1,2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,2,2),又因为M,N分别为B1C和D1D的中点,所以M,N(1,2,1).(1)证明依题意,可得n(0,0,1)为平面ABCD的一个法向量,由此可得n0,又因为直线MN平面ABCD,所以MN平面ABCD.(2)
195、(1,2,2),(2,0,0),设n1(x1,y1,z1)为平面ACD1的一个法向量,则即不妨设z11,可得n1(0,1,1).设n2(x2,y2,z2)为平面ACB1的一个法向量,则又(0,1,2),得不妨设z21,可得n2(0,2,1).因此有cosn1,n2,于是sinn1,n2,所以二面角D1ACB1的正弦值为.(3)假设存在点E,使得NE与平面ABCD所成角的正弦值为.依题意,可设,其中,则E(0,2),从而(1,2,1),又n(0,0,1)为平面ABCD的一个法向量,由已知,得|cos,n|,整理得2430,解得2.又因为,所以2,因此存在点E,满足题设条件,且线段A1E2.热点三
196、立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】 (2016全国卷)如图,菱形ABCD的对角线AC与BD交于点O,AB5,AC6,点E,F分别在AD,CD上,AECF,EF交BD于点H.将DEF沿EF折到DEF的位置,OD.(1)证明:DH平面ABCD;(2)求二面角BDAC的正弦值.(1)证明由已知得ACBD,ADCD.又由AECF得,故ACEF.因此EFHD,从而EFDH.由AB5,AC6得DOBO4.由EFAC得.所以OH1,DHD
197、H3.于是DH2OH2321210DO2,故DHOH.又DHEF,而OHEFH,所以DH平面ABCD.(2)解如图,以H为坐标原点,的方向为x轴正方向,建立空间直角坐标系Hxyz.则H(0,0,0),A(3,1,0),B(0,5,0),C(3,1,0),D(0,0,3),(3,4,0),(6,0,0),(3,1,3).设m(x1,y1,z1)是平面ABD的一个法向量,则即所以可取m(4,3,5).设n(x2,y2,z2)是平面ACD的一个法向量,则即所以可取n(0,3,1).于是cosm,n.sinm,n.因此二面角BDAC的正弦值是.探究提高立体几何中的折叠问题,关键是搞清翻折前后图形中线面
198、位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【训练3】 (2015陕西卷)如图1,在直角梯形ABCD中,ADBC,BAD,ABBC1,AD2,E是AD的中点,O是AC与BE的交点.将ABE沿BE折起到A1BE的位置,如图2.(1)证明:CD平面A1OC;(2)若平面A1BE平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明在题图1中,因为ABBC1,AD2,E是AD的中点,BAD,所以BEAC.即在题图2中,BEOA1,BEOC,从而BE平面A1OC.又CDBE,所以CD平面A1OC.(2)解由已知,平面A1BE平
199、面BCDE,又由(1)知,BEOA1,BEOC,所以A1OC为二面角A1BEC的平面角,所以A1OC.如图,以O为原点,分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1BA1EBCED1,BCED,所以B,E,A1,C,得,(,0,0).设平面A1BC的一个法向量n1(x1,y1,z1),平面A1CD的一个法向量n2(x2,y2,z2),平面A1BC与平面A1CD的夹角为,则得取n1(1,1,1); 得取n2(0,1,1),从而cos |cosn1,n2|,即平面A1BC与平面A1CD夹角的余弦值为.(建议用时:80分钟)1.(2017金华质检)在平面四边形ABCD中,ABBDCD1,
200、ABBD,CDBD,将ABD沿BD折起,使得平面ABD平面BCD,如图.(1)求证:ABCD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.(1)证明平面ABD平面BCD,平面ABD平面BCDBD,AB平面ABD,ABBD,AB平面BCD.又CD平面BCD,ABCD.(2)解过点B在平面BCD内作BEBD,如图.由(1)知AB平面BCD,BE平面BCD,BD平面BCD,ABBE,ABBD.以B为坐标原点,分别以,的方向为x轴,y 轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则(1,1,0),(0,1,1
201、).设平面MBC的法向量为n(x0,y0,z0),则即取z01,得平面MBC的一个法向量为n(1,1,1).设直线AD与平面MBC所成角为,则 sin | cosn,|,即直线AD与平面MBC所成角的正弦值为.2.(2017浙江三市十二校联考)如图,三棱锥PABC中,PC平面ABC,PC3,ACB.D,E分别为线段AB,BC上的点,且CDDE,CE2EB2.(1)证明:DE平面PCD;(2)求二面角APDC的余弦值.(1)证明由PC平面ABC,DE平面ABC,故PCDE.由CE2,CDDE得CDE为等腰直角三角形,故CDDE.由PCCDC,DE垂直于平面PCD内两条相交直线,故DE平面PCD.
202、(2)解由(1)知,CDE为等腰直角三角形,DCE,如图,过D作DF垂直CE于F,易知DFFCFE1,又已知EB1,故FB2.由ACB,得DFAC,故ACDF.以C为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则C(0,0,0),P(0,0,3),A,E(0,2,0),D(1,1,0),(1,1,0),(1,1,3),.设平面PAD的法向量为n1(x1,y1,z1),由n10,n10,得故可取n1(2,1,1).由(1)可知DE平面PCD,故平面PCD的法向量n2可取为,即n2(1,1,0).从而法向量n1,n2的夹角的余弦值为cos n1,n2,故所求二面角APDC
203、的余弦值为.3.(2017丽水月考)如图,直三棱柱ABCA1B1C1中,ABACAA14,BC2.BDAC,垂足为D,E为棱BB1上一点,BD平面AC1E.(1)求线段B1E的长;(2)求二面角C1ACE的余弦值.解(1)由ABAC4,知ABC为等腰三角形,又BDAC,BC2,故ACBDBC,解得BD.从而在RtCDB中,CD1,故ADACCD3.如图,过点D作DFCC1,交AC1于F,连接EF.因为DFCC1,从而,得DF3.因为DFCC1,CC1BB1,故DFBB1,即DFBE,故DF与BE确定平面BDFE.又BD平面AC1E,而平面BDFE平面AC1EEF,故BDEF.故四边形BDFE为
204、平行四边形,从而DFBE3,所以B1EBB1BE1.(2)如图,以D为坐标原点,分别以,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系,则D(0,0,0),C(1,0,0),E(0,3),(1,0,0),(0,3).设平面ACE的一个法向量为n1(x,y,z),由n10,n10,得故可取n1(0,3,).又平面ACC1在xDz面上,故可取n2(0,1,0)为平面ACC1的一个法向量.从而法向量n1,n2的夹角的余弦值为cosn1,n2.由图知二面角C1ACE为锐角,故二面角C1ACE的余弦值为.4.(2017郑州模拟)等边三角形ABC的边长为3,点D,E分别是边AB,AC上的点,且满足,如
205、图1.将ADE沿DE折起到A1DE的位置,使二面角A1DEB为直二面角,连接A1B,A1C,如图2.(1)求证:A1D平面BCED;(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60?若存在,求出PB的长;若不存在,请说明理由.(1)证明因为等边三角形ABC的边长为3,且,所以AD1,AE2.在ADE中,DAE60,由余弦定理得DE.从而AD2DE2AE2,所以ADDE.折起后有A1DDE,因为二面角A1DEB是直二面角,所以平面A1DE平面BCED,又平面A1DE平面BCEDDE,A1D平面A1DE,A1DDE,所以A1D平面BCED.(2)解存在.理由:由(1)的证明
206、,可知EDDB,A1D平面BCED.以D为坐标原点,分别以射线DB,DE,DA1为x轴,y轴,z轴的正半轴,建立如图所示的空间直角坐标系Dxyz.设PB2a(02a3),作PHBD于点H,连接A1H,A1P,则BHa,PHa,DH2a.所以A1(0,0,1),P(2a,a,0),E(0,0).所以(a2,a,1).因为ED平面A1BD,所以平面A1BD的一个法向量为(0,0).要使直线PA1与平面A1BD所成的角为60,则sin 60,解得a.此时2a,满足02a3,符合题意.所以在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60,此时PB.5.(2017石家庄一模)在平面四边形A
207、CBD(图)中,ABC与ABD均为直角三角形且有公共斜边AB,设AB2,BAD30,BAC45,将ABC沿AB折起,构成如图所示的三棱锥CABD,且使CD.(1)求证:平面CAB平面DAB;(2)求二面角ACDB的余弦值.(1)证明如图,取AB的中点O.连接CO,DO.在RtACB,RtADB中,AB2,则CODO1,CD,CO2DO2CD2,即COOD,又COAB,ABODO,AB,OD平面ABD,CO平面ABD,CO平面ABC,平面CAB平面DAB.(2)解以O为原点,AB,OC所在的直线分别为y,z轴,建立如图所示的空间直角坐标系,则A(0,1,0),B(0,1,0),C(0,0,1),
208、D,(0,1,1),(0,1,1),.设平面ACD的一个法向量为n1(x1,y1,z1),则即即令z11,则y11,x1,n1(,1,1).设平面BCD的一个法向量为n2(x2,y2,z2),则即即令z21,则y21,x2,n2,cosn1,n2,二面角ACDB的余弦值为.6.(2017杭州七校联考)如图,在梯形ABCD中,ABCD,ADDCCB1,BCD120,四边形BFED为矩形,平面BFED平面ABCD,BF1.(1)求证:AD平面BFED;(2)点P在线段EF上运动,设平面PAB与平面ADE所成锐二面角为,试求的最小值.(1)证明在梯形ABCD中,ABCD,ADDCCB1,BCD120,AB2,BD2AB2AD22ABADcos 603.AB2AD2BD2,ADBD.平面BFED平面ABCD,平面BFED平面ABCDBD,DE平面BFED,DEDB,DE平面ABCD,DEAD,又DEBDD,AD平面BFED.(2)解由(1)可建立分别以直线DA,DB,DE为x轴,y轴,z轴的空间直角坐标系.如图所示.令EP(0),则D(0,0,0),A(1,0,0),B(0,0),P(0,1),(1,0),(0,1).设n1(x,y,z)为平面PAB的一个法向量,由得取y1,得n1(,1,),n2(0,1,0)是平面ADE的一个法向量,cos .0,当时,cos 有最大值,的最小值为.