ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:120.47KB ,
资源ID:606477      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-606477-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021-2022高中数学人教版选修2-2教案:1-3-2函数的极值与导数 (一) WORD版含答案.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021-2022高中数学人教版选修2-2教案:1-3-2函数的极值与导数 (一) WORD版含答案.docx

1、课题:函数的极值与导数(1课时)课时:10课型:新授课教学目标1知识与技能1结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件2理解函数极值的概念,会用导数求函数的极大值与极小值2 过程与方法结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。3 情感与价值感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。重点:利用导数求函数的极值难点:函数在某点取得极值的必要条件与充分条件教学过程一创设情景,导入新课1、通过上节课的学习,导数和函数单调性的关系是什么?(提问学生回答)2观察图1.3.8表示高台跳水运动员的高度h随时

2、间t变化的函数=-4.9t2+6.5t+10的图象,回答以下问题(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数在t=a处的导数是多少呢?(2)在点t=a附近的图象有什么特点?(3)点t=a附近的导数符号有什么变化规律?共同归纳:函数h(t)在a点处h/(a)=0,在t=a的附近,当ta时,函数单调递增, 0;当ta时,函数单调递减, 0,即当t在a的附近从小到大经过a时, 先正后负,且连续变化,于是h/(a)=0.3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?探索研讨1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:(1)函数y=f(x)在a.b点的函数

3、值与这些点附近的函数值有什么关系?(2)函数y=f(x)在a.b.点的导数值是多少?(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?2、极值的定义:我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。极大值点与极小值点称为极值点, 极大值与极小值称为极值.3、通过以上探索,你能归纳出可导函数在某点x0取得极值的充要条件吗?充要条件:f(x0)=0且点x0的左右附近的导数值符号要相反4、引导学生观察图1.3.11,回答以下问题:(1)找出图中的极点,并说明哪些点为极

4、大值点,哪些点为极小值点?(2)极大值一定大于极小值吗?5、随堂练习:1如图是函数y=f(x)的函数,试找出函数y=f(x)的极值点,并指出哪些是极大值点,哪些是极小值点.如果把函数图象改为导函数y=的图象?讲解例题例4 求函数的极值教师分析:求f/(x),解出f/(x)=0,找函数极点;由函数单调性确定在极点x0附近f/(x)的符号,从而确定哪一点是极大值点,哪一点为极小值点,从而求出函数的极值.学生动手做,教师引导解:=x2-4=(x-2)(x+2)令=0,解得x=2,或x=-2.下面分两种情况讨论:(1) 当0,即x2,或x-2时;(2) 当0,即-2x2时.当x变化时, ,f(x)的变化情况如下表:x(-,-2)-2(-2,2)2(2,+)+0_0+f(x)单调递增单调递减单调递增

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1