ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:59.50KB ,
资源ID:605560      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-605560-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大版高中数学选修2-1教案:2.4 抛物线.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

北师大版高中数学选修2-1教案:2.4 抛物线.doc

1、2.4抛物线一 教学设想1 2 3 1抛物线及标准方程(1) 教具的准备问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.通过提问来激发学生的探究欲望,首先研究抛物线的定义,教师可以用直观的教具叫学生参与进行演示,再由学生归纳出抛物线的定义(2) 抛物线的标准方程

2、设定点F到定直线l的距离为p(p为已知数且大于0)下面,我们来求抛物线的方程怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的方案方案1:(由第一组同学完成,请一优等生演板)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30)设定点F(p,0),动点M的坐标为(x,y),过M作MDy轴于D,抛物线的集合为:p=M|MF|=|MD|化简后得:y2=2px-p2(p0)方案2:(由第二组同学完成,请一优等生演板)以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31)设动点M的坐标为(x,y),且设直线l的

3、方程为x=-p,定点F(0,0),过M作MDl于D,抛物线的集合为:p=M|MF|=|MD|化简得:y2=2px+p2(p0)方案3:(由第三、四组同学完成,请一优等生演板)取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32) 抛物线上的点M(x,y)到l的距离为d,抛物线是集合p=M|MF|=d化简后得:y2=2px(p0)(3) 例题讲解与引申教材中选取了2个例题,例1是让学生会应用公式求抛物线的焦点坐标和准线方程。例2是应用方面的问题,关键是由题意设出抛物线的方程即可。2 2。 3 2 抛物线的几何性质(1) 抛物线的几何性质下

4、面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p0)为例,用小黑板给出下表,请学生对比、研究和填写(2) 例题的讲解与引申 例3有2种解法;解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离可得焦半径公式设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p特别地:当ABx轴,抛物线的通径|AB|=2p例4涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法w.w.w.k.s.5.u.c.o.m

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3