1、课时跟踪检测(十) 数列求和1数列1,12,1222,12222n1,的前99项和为()A2100101 B299101C210099 D29999解析:选A由数列可知an12222n12n1,所以前99项的和为S99(21)(221)(2991)22229999992100101.2数列an的通项公式是an.若前n项和为10,则项数为()A11 B99 C120 D121解析:选Can,Sna1a2an(1)()()1.令110,得n120.3已知数列an的通项公式是an(1)n(3n2),则a1a2a10等于()A15 B12 C12 D15解析:选Aan(1)n(3n2),a1a2a10
2、147102528(14)(710)(2528)3515.4已知函数f(n)且anf(n)f(n1),则a1a2a3a100等于()A0 B100 C100 D10 200解析:选B由题意可得,当n为奇数时,anf(n)f(n1)n2(n1)22n1;当n为偶数时,anf(n)f(n1)n2(n1)22n1.所以a1a2a3a100(a1a3a99)(a2a4a100)2(13599)502(246100)50100,故选B.5已知函数yloga(x1)3(a0,a1)的图象所过定点的横、纵坐标分别是等差数列an的第二项与第三项,若bn,数列bn的前n项和为Tn,则T10()A. B C1 D
3、解析:选B对数函数ylogax的图象过定点(1,0),函数yloga(x1)3的图象过定点(2,3),则a22,a33,故ann,bn,T1011,故选B.6已知数列an满足a11,an1an2n(nN*),则S2 020_.解析:数列an满足a11,an1an2n,n1时,a22,n2时,anan12n1,得2.数列an的奇数项、偶数项分别成等比数列,S2 020321 0103.答案:321 01037已知等比数列an的公比q1,且a11,3a32a2a4,则数列的前4项和为_解析:等比数列an中,a11,3a32a2a4,3q22qq3.又q1,q2,an2n1,2n1,即是首项为,公比
4、为的等比数列,数列的前4项和为.答案:8已知an2n2,abn,cn,则数列cn的前n项和Sn_.解析:因为a(2n2)2bn,所以bn2n4,所以cn(n2)n3,所以Sn1201(1)0(n2)n3,则Sn1100(1)1(n2)n2.得Sn4(n2)n24(n2)n2,整理得Sn.答案:9已知等比数列an各项都是正数,Sn为其前n项和,a38,S314.(1)求数列an的通项公式;(2)设anbn是首项为1,公差为3的等差数列,求数列bn的通项公式及其前n项和Tn.解:(1)等比数列an中,a38,S314,可列方程组an各项都是正数,q0,解得an2n.(2)由题意知anbn3n2,即
5、2nbn3n2,bn2n3n2.Tn21222n3(12n)2n32n2n1n22.10已知等差数列an的前n项和为Sn,且满足a611,S10100.(1)求数列an的通项公式;(2)设bn(1)n,求数列bn的前n项和Tn.解:(1)设该等差数列an的首项为a1,公差为d,根据题意可知解得所以ana1(n1)d2n1,所以数列an的通项公式是an2n1.(2)由(1)得an2n1,所以bn(1)n(1)n,所以Tn.当n为奇数时,Tn;当n为偶数时,Tn.所以Tn(1)n.1设数列an是以2为首项,1为公差的等差数列,bn是以1为首项,2为公比的等比数列,则ab1ab2ab10等于()A1
6、 033 B1 034 C2 057 D2 058解析:选A由已知可得ann1,bn2n1,于是abnbn1,因此ab1ab2ab10(b11)(b21)(b101)b1b2b101020212910101 033.2已知Sn为数列an的前n项和,若an(4cos n)n(2cos n),则S20()A31 B122 C324 D484解析:选Ban(4cos n)n(2cos n),当n2k1(kN*)时,ann;当n2k(kN*)时,an.ana11,a2,a33,a4,a55,.S20(1319)122.故选B.3数列an满足an1(1)nan2n1,则an的前60项和为_解析:当n2k
7、(kN*)时,a2k1a2k4k1,当n2k1(kN*)时,a2ka2k14k3,a2k1a2k12,a2k3a2k12,a2k1a2k3,a1a5a61.a1a2a3a60(a2a3)(a4a5)(a60a61)3711(2601)30611 830.答案:1 8304从“Snn;S2a3,a4a1a2;a12,a4是a2,a8的等比数列”三个条件任选一个,补充到下面的横线处,并解答已知等差数列的前n项和为Sn,公差d不等于0,_,nN*.(1)求数列的通项公式;(2)若bnS2n1S2n,数列的前n项和为Wn,求Wn.解:(1)选,Snnn2n,令n1a11a12,Snn2n,当n2时,S
8、n1(n1)2n1,anSnSn12n,而a12满足上式,an2n.选,由S2a3,a4a1a2可得解得a1d2,an22(n1)2n.选,由a12,a4是a2,a8的等比数列,得aa2a8,即(23d)2(2d)(27d),解得d2,an22(n1)2n.(2)由(1)知an2n,Snn2n,则bn(2n1)22n1(2n)22n322n2n,Wn4(4n1)2(2n1)4n12n16.5在a82a41,4是a1,a3的等比中项,S54a1a2这三个条件中任选一个,补充在下面问题中,并作答问题:已知各项均为正数的等差数列an的前n项和为Sn,S3a6a1,且_(1)求an;(2)设数列的前n项和为Tn,试比较Tn与的大小,并说明理由解:(1)设等差数列an的公差为d(d0),由S3a6a1,可得3a13d5d,即3a12d.选a82a41,即有a17d2a16d1,即da11,由解得a12,d3,则an23(n1)3n1.选4是a1,a3的等比中项,即有a1a316,即a1(a12d)16,由解得a12,d3,则an23(n1)3n1.选S54a1a2,即有5a110d4a1(a1d),由解得a12,d3,则an23(n1)3n1.(2)由(1)知Sn2nn(n1)3n2n,Snnn(n1),则Tn,由0,可得Tn.