ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:1.43MB ,
资源ID:59602      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-59602-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(云南省师范大学附属中学2017届高三上学期高考适应性考试月考(二)数学(理)试题 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

云南省师范大学附属中学2017届高三上学期高考适应性考试月考(二)数学(理)试题 WORD版含答案.doc

1、 第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,为整数集,则集合中元素的个数是( )A 3 B 4 C 5 D62.在复平面内,复数对应的点位于( )A第一象限 B第二象限 C 第三象限 D第四象限3.设,向量,且,则( )A B C 10 D4.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第层楼时,上下楼造成的不满意度为,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第层楼时,环境不满意度为,则同学们认

2、为最适宜的教室应在( )楼A 2 B 3 C. 4 D85.函数的值域为( )A B C. D6.如图1所示的程序框图,若,输入,则输出的( )A 2016 B 2017 C. D7.在中,所对的边分别是,且,则的值为( )A B C. D8.函数的导函数为,对,都有成立,若,则不等式的解是( )A B C. D9.某几何体的三视图如图2所示,则该几何体的表面积为( )A 50 B50.5 C. 51.5 D6010.用半径为的圆铁皮剪一个内接矩形,再以内接矩形的两边分别作为圆柱的高与底面半径,则圆柱的体积最大时,该圆铁皮面积与其内接矩形的面积比为( )A B C. D11.设双曲线的右焦点为

3、,过点作与轴垂直的直线交两渐近线于两点,且与双曲线在第一象限的交点为,设为坐标原点,若,则该双曲线的离心率为( )A B C. 3 D212.对于函数,设,(且),令集合,则集合为( )A空集 B实数集 C. 单元素集 D二元素集第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若,且满足,则的最大值等于 14.在平面直角坐标系中,已知圆上有且仅有三个点到直线的距离为1,则实数的值是 15.已知数列为等比数列,是它的前项和,设,若,且与的等差中项为,则 16.若,且,则下列关系式:;.其中正确的序号是 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过

4、程或演算步骤.) 17. (本小题满分12分)已知数列中,.(1)证明数列是等差数列,并求的通项公式;(2)设,求的前项和.18. (本小题满分12分)如图3所示的三棱台中,平面,.(1)证明:平面;(2)若点为中点,求二面角的余弦值.19. (本小题满分12分)如图4所示,小波从街区开始向右走,在每个十字路口都会遇到红绿灯,要是遇到绿灯则小波继续往前走,遇到红灯就往回走,假设任意两个十字路口的绿灯亮或红灯亮都是相互独立的,且绿灯亮的概率都是,红灯亮的概率都是.(1)求小波遇到4次红绿灯后,处于街区的概率;(2)若小波一共遇到了3次红绿灯,设此时小波所处的街区与街区相距的街道数为(如小波若处在

5、街区则相距零个街区,处在街区都是相距2个街道),求的分布列和数学期望.20. (本小题满分12分)已知抛物线过点,为抛物线的准线与轴的交点,若.(1)求抛物线的方程;(2)在抛物线上任取一点,过点作两条直线分别与抛物线另外相交于点和点,连接,若直线的斜率都存在且不为零,设其斜率分别为,求证:.21. (本小题满分12分)已知函数.(1)讨论的单调性;(2)若,对于任意,都有恒成立,求的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程:(为参数),曲线上的点对应的参数,以坐标原点为极点,以轴

6、正半轴为极轴,建立极坐标系,点的极坐标是,直线过点,且与曲线交于不同的两点.(1)求曲线的普通方程;(2)求的取值范围.23. (本小题满分10分)选修4-5:不等式选讲设函数的最小值为.(1)求;(2)已知是正实数,且满足,求的最小值.试卷答案第卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案CBABDCBADCDB【解析】1由题意,知,故中元素的个数为5,故选C2因为,故复数对应的点位于第二象限,故选B5因为,的值域为,故选D6当x=2016时,所以f(x)g(x),所以,故选C7,再由余弦定理得:,由,将其角化边得,将代入得

7、:,左右两边同除以c2,解得:或(舍),故选B8由于在解集内,所以,在解集内递增,令,而,所以在点处,与的切线斜率关系为,在解集内都递增且交点为,所以,不等式的解集是,故选A9由俯视图可以判断该几何体的底面为直角三角形,由正视图和侧视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的在长方体中分析还原,如图1所示,故几何体ABCA1PC1的表面积为60,故选D10设圆柱的高为x,则其内接矩形的一边长x,那么另一边长为,圆柱的体积,列表如下:x+0当x=时,此圆柱体积最大,那么另一边长为,所以,圆铁皮面积与其内接矩形的面积比为=,故选C11双曲线的渐近线为:,设焦点F(c,0),点

8、A的纵坐标大于零,则,因为,所以,所以,解得:,又由,得:,解得,所以,故选D12,故以4为周期,集合M为实数集,故选B第卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)题号13141516答案15【解析】13不等式组所表示的平面区域如图2阴影所示,作:,平移至点位置时,z取得最大值,即 14如图3,圆的半径为,圆上有且仅有3个点到直线12x5y+c=0的距离为1,问题转化为坐标原点(0,0)到直线12x5y+c=0的距离等于,即15由,又得,所以,所以.,16令,则是偶函数,当x时,0,f(x)为单调减函数,当x时,0,此时f(x)为单调增函数,所以,即,所以,即应

9、填入三、解答题(共70分解答应写出文字说明,证明过程或演算步骤)17(本小题满分12分)解:()当时,又,故是以2为首项,3为公差的等差数列, (5分)(),令,则得: , (12分)18(本小题满分12分)()证明:如图4,过点作,故为等腰直角三角形,又平面ABC,又,且,平面,又,平面 (6分)()解:如图,建立空间直角坐标系Axyz,.由()知,平面的一个法向量为设平面ABD的一个法向量为,则即令则,故二面角的余弦值为 (12分)19(本小题满分12分)解:()设小波遇到4次红绿灯之后处于D街区为事件A,则事件A共有三个基本事件,即四次遇到的红绿灯情况分别为红红绿绿,绿红红绿,绿绿红红,

10、故 (5分)()可能的取值为0,1,2,3,故分布列为0123P (12分)20(本小题满分12分)()解:,代入解得:或(舍去),所以抛物线的方程为 (4分)()证明:设点,因为点在抛物线上,所以,故直线的方程为:联立: 得此方程的两个根分别为,所以,同理可得,化简得故, (12分)21(本小题满分12分)解:()若,则在上单调递增,在(a,2)上单调递减;若,则在(,)上单调递增;若,则在上单调递增,在上单调递减(5分)()由()知,当时,在上单调递增,在上单调递减, 恒成立,即恒成立即恒成立,令,易知在其定义域上有最大值所以, (12分)22(本小题满分10分)【选修44:坐标系与参数方程】解:()将点和代入曲线的参数方程:中得,所以,所以曲线的参数方程为(为参数),化为普通方程为 (4分)()点的直角坐标是(),设直线的参数方程: (t为参数),代入到曲线的方程,得到,令,得设点,分别对应参数,则,由韦达定理可得到,因为,所以,所以的取值范围为 (10分)23(本小题满分10分)【选修45:不等式选讲】解:()当时,单调递减,当时,单调递增,所以当时,的最小值为1,即 (5分)()由()知,又,是正实数,由柯西不等式可知,即,当且仅当时等号成立 (10分)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3