ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:357KB ,
资源ID:586447      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-586447-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年北师大版数学选修2-3讲义:第1章 §3 第2课时 组合的应用 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年北师大版数学选修2-3讲义:第1章 §3 第2课时 组合的应用 WORD版含答案.doc

1、高考资源网() 您身边的高考专家第2课时组合的应用学 习 目 标核 心 素 养1.能应用组合知识解决有关组合的简单实际问题(重点)2能解决有限制条件的组合问题(难点)通过对组合应用的学习,培养“逻辑推理”、“数学建模”、“数学运算”的数学素养.1组合与排列的异同点共同点:排列与组合都是从n个不同元素中取出m(mn)个元素不同点:排列与元素的顺序有关,组合与元素的顺序无关2应用组合知识解决实际问题的四个步骤(1)判断:判断实际问题是否是组合问题(2)方法:选择利用直接法还是间接法解题(3)计算:利用组合数公式结合两个计数原理计算(4)结论:根据计算结果写出方案个数1某乒乓球队有9名队员,其中2名

2、是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有()A26种 B84种C35种D21种C从7名队员中选出3人有C35(种)选法2将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A12种 B18种 C36种 D54种B由题意,不同的放法共有CC318种3某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有_种(用数字作答)10两种情况:选2本画册,2本集邮册送给4位朋友,有C6种方法;选1本画册,3本集邮册送给4位朋友,有C4种方

3、法,所以不同的赠送方法共有6410(种)4甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有_种96甲选修2门,有C6(种)不同方案乙选修3门,有C4(种)不同选修方案丙选修3门,有C4(种)不同选修方案由分步乘法计数原理,不同的选修方案共有64496(种)无限制条件的组合问题【例1】在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人参加市级培训在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人不能参加;(4)甲、乙、丙三人只能有1人参加解(1)从中任取5人是组合问题,共有C792种不同的

4、选法(2)甲、乙、丙三人必需参加,则只需要从另外9人中选2人,是组合问题,共有C36种不同的选法(3)甲、乙、丙三人不能参加,则只需从另外的9人中选5人,共有C126种不同的选法(4)甲、乙、丙三人只能有1人参加,可分两步:先从甲、乙、丙中选1人,有C3种选法;再从另外9人中选4人,有C种选法共有CC378种不同的选法解答简单的组合问题的思考方法(1)弄清要做的这件事是什么事.(2)选出的元素是否与顺序有关,也就是看看是不是组合问题.(3)结合两个计数原理,利用组合数公式求出结果.1现有10名教师,其中男教师6名,女教师4名(1)现要从中选2名去参加会议,有多少种不同的选法?(2)选出2名男教

5、师或2名女教师去外地学习的选法有多少种?解(1)从10名教师中选2名去参加会议的选法种数,就是从10个不同元素中取出2个元素的组合数,即C45.(2)可把问题分两类:第1类,选出的2名是男教师有C种方法;第2类,选出的2 名是女教师有C种方法,即CC21(种)有限制条件的组合问题【例2】高二(1)班共有35名同学,其中男生20名,女生15名,今从中选出3名同学参加活动(1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内,不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种

6、?解(1)从余下的34名学生中选取2名,有C561(种)不同的取法有561种(2)从34名可选学生中选取3名,有C种或者CCC5 984种不同的取法有5 984种(3)从20名男生中选取1名,从15名女生中选取2名,有CC2 100种不同的取法有2 100种(4)选取2名女生有CC种,选取3名女生有C种,共有选取方式NCCC2 1004552 555种不同的取法有2 555种(5)选取3名的总数有C,因此选取方式共有NCC6 5454556 090种不同的取法有6 090种常见的限制条件及解题方法(1)特殊元素:若要选取的元素中有特殊元素,则要以有无特殊元素,特殊元素的多少作为分类依据.(2)

7、含有“至多”“至少”等限制语句:要分清限制语句中所包含的情况,可以此作为分类依据,或采用间接法求解.(3)分类讨论思想:解题的过程中要善于利用分类讨论思想,将复杂问题分类表达,逐类求解.2现有5名男司机,4名女司机,需选派5人运货到某市(1)如果派3名男司机、2名女司机,共有多少种不同的选派方法?(2)至少有两名男司机,共有多少种不同的选派方法?解(1)从5名男司机中选派3名,有C种方法,从4名女司机中选派2名,有C种方法,根据分步乘法计数原理得所选派的方法总数为CCCC60种(2)从9人中任选5人运货有C种方法其中1名男司机,4名女司机有CC5种选法所以至少有两名男司机的选派方法为C5121

8、种1无限制条件的组合应用题其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答2有限制条件的组合应用题中“含”与“不含”问题:(1)这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”(2)若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法(3)解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准1圆上有10个点,过每三个点画一个圆内接三角形,则一共可以画的三角形个数为()A720B360C240D120D确定三角形的个数为C120.2从10名大学毕业生中选3人担任村长助理,则甲

9、、乙至少有1人入选,而丙没有入选的不同选法的种数为()A28B49 C56D85B依题意,满足条件的不同选法的种数为CCCC49种3由三个3和四个4可以组成_个不同的七位数35在七个位置上选出3个位置放入3,其余放入4,有CC35个不同的数4某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是_. 2 100按性别分层,并在各层按比例随机抽样,则需从10名男性中抽取4人,5名女性中抽取2人,共有CC2 100种抽法5某区有7条南北向街道,5条东西向街道(如图)(1)图中有多少个矩形?(2)从A点走向B点最短的走法有多少种?解(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有CC210(个)(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A到B最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有CC210(种)走法- 6 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3