ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:95.50KB ,
资源ID:585075      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-585075-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年北师大版数学选修1-1新素养应用案巩固提升:第二章 §3 3.2 第1课时 双曲线的简单几何性质 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年北师大版数学选修1-1新素养应用案巩固提升:第二章 §3 3.2 第1课时 双曲线的简单几何性质 WORD版含解析.doc

1、A基础达标1已知双曲线的渐近线为yx,焦点坐标为(4,0),(4,0),则双曲线方程为()A1B1C1D1解析:选D因为焦点在x轴上,c4,c242a2b2a2(a)24a2,所以a24,b212所以双曲线方程为1.故选D2中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()ABCD解析:选D由题意知,过点(4,2)的渐近线的方程为yx,所以24,所以a2b设bk,则a2k,ck,所以e3如图,双曲线C:1的左焦点为F1,双曲线上的点P1与P2关于y轴对称,则|P2F1|P1F1|的值是()A3B4C6D8解析:选C设F2为右焦点,连接P2F2(图略),由双曲线的对

2、称性,知|P1F1|P2F2|,所以|P2F1|P1F1|P2F1|P2F2|2364已知抛物线y22px(p0)上一点M(1,m)(m0)到其焦点的距离为5,双曲线y21的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值为()ABCD解析:选A由题意得15,p8,y216x,当x1时,m216,m0,m4所以M(1,4),双曲线的左顶点A(,0),kAM,由题意,所以a5若一双曲线与椭圆4x2y264有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为()Ay23x236Bx23y236C3y2x236D3x2y236解析:选A椭圆4x2y264即1,焦点为(0,4),离心率

3、为,则双曲线的焦点在y轴上,c4,e,从而a6,b212,故所求双曲线的方程为y23x2366与双曲线x22y22有共同的渐近线,且过点M(,2)的双曲线方程是_解析:该双曲线的方程可设为x22y2(0),将M(,2)代入,得6,故该双曲线方程为1答案:17设F1和F2为双曲线1(a0,b0)的两个焦点,若F1,F2,P(0,2b)是正三角形的三个顶点,则双曲线的离心率为_解析:由题设条件可得,所以,所以,所以4,所以e2答案:28双曲线1(a0,b0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率的取值范围为_解析:由题意当x1时

4、,yx2,所以e211,所以e(1,)答案:(1,)9已知双曲线E:1(1)若m4,求双曲线E的焦点坐标、顶点坐标和渐近线方程;(2)若双曲线E的离心率为e,求实数m的取值范围解:(1)m4时,双曲线方程化为1,所以a2,b,c3,所以焦点坐标为(3,0),(3,0),顶点坐标为(2,0),(2,0),渐近线方程为yx(2)因为e21,e,所以12,解得5m0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为_解析:由F为左焦点得a23,则双曲线方程为y21设P(x0,y0),则(x0,y0)(x02,y0)x2x0yx2x01x2x011由点P在双曲线右支上得x0 ,所以32答案

5、:32,)13已知双曲线中心在原点,对称轴为坐标轴,且过点P(3,1),一条渐近线与直线3xy10平行,求双曲线的标准方程解:由已知,双曲线中心在原点,坐标轴为对称轴,由于其中一条渐近线与直线l:3xy10平行,所以,双曲线的一条渐近线方程为3xy0,即y3x可设双曲线方程为9x2y2(0)由于双曲线过点P(3,1),所以932(1)2,即80所以所求双曲线的标准方程为114(选做题)设F1,F2分别为双曲线1(a0,b0)的左、右焦点,A1,A2分别为这个双曲线的左、右顶点,P为双曲线右支上的任意一点,求证:以A1A2为直径的圆既与以PF2为直径的圆外切,又与以PF1为直径的圆内切证明: 如图,以A1A2为直径的圆的圆心为O,半径为a,令M,N分别是PF2,PF1的中点,由三角形中位线的性质,得|OM|PF1|.又根据双曲线的定义,得|PF1|2a|PF2|,从而有|OM|(2a|PF2|)a|PF2|.这表明,两圆的圆心距等于两圆半径之和,故以A1A2为直径的圆与以PF2为直径的圆外切同理,得|ON|PF2|(|PF1|2a)|PF1|a.这表明两圆的圆心距等于两圆半径之差,故以A1A2为直径的圆与以PF1为直径的圆内切

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3