1、鸡兔同笼问题基本公式是:兔数=(实际脚数-每只鸡脚数鸡兔总数)(每只兔子脚数-每只鸡脚数)鸡兔同笼问题例题透析1 1、有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,也就是2442=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34,有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数2-总头数=兔子数.上面的解
2、法是孙子算经中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说此题.如果设想88只都是兔子,那么就有488只脚,比244只脚多了884-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(884-244)(4-2)= 54(只).说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数总头数-总脚数)(兔脚数-鸡脚数).当然,我们也可以设想88只都是“鸡”
3、,那么共有脚288=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,682=34(只).说明设想中的“鸡”,有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数总头数)(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.鸡兔同笼问题例题透析2红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个
4、头,280只脚.现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有蓝笔数=(1916-280)(19-11)=248=3(支).红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔.对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是8(11+19)=240.比280少40.40(19-11)=5.就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3。 308比1916或1116要容易计算些.利用已知数的特殊性,靠心算来完成计算.实际上,可以
5、任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数1910+116=256.比280少24.24(19-11)=3,就知道设想6只“鸡”,要少3只.要使设想的数,能给计算带来方便,常常取决于你的心算本领.鸡兔同笼问题例题透析3一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打306=5(份),乙每小时打3010=3(份).现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“
6、兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.根据前面的公式“兔”数=(30-37)(5-3)=4.5,“鸡”数=7-4.5=2.5,也就是甲打字用了4.5小时,乙打字用了2.5小时.答:甲打字用了4小时30分.鸡兔同笼问题例题透析4今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作
7、“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是(254-86)(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)4-4=40(岁).因此,当父的年龄是兄的年龄的3倍时,兄的年龄是(40-10)(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄的3倍.鸡兔同笼问题例题透析5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿
8、的蜘蛛数=(118-618)(8-6)=5(只).因此就知道6条腿的小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(132-20)(2-1)=6(只).因此蜻蜓数是13-6=7(只). 答:有5只蜘蛛,7只蜻蜓,6只蝉.鸡兔同笼问题例题透析6某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?解:对2道、3道、4道题的人共有52-7-6=39(人).他们共做对181-17-56=144(道).由于对2道和3道题的人数一样多,我们
9、就可以把他们看作是对2.5道题的人(2+3)2=2.5).这样兔脚数=4,鸡脚数=2.5,总脚数=144,总头数=39.对4道题的有(144-2.539)(4-1.5)=31(人). 答:做对4道题的有31人. 鸡兔同笼练习题1鸡兔共100只,共有脚280只,鸡兔各有多少只?2在一棵松树上有百灵鸟和松鼠共15只,总共有48条腿,百灵鸟和松鼠各有多少只?3.56个学生去划船,共乘坐10只船恰好坐满,其中大船坐6人,小船坐4人,大船和小船各几只?4.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次,它一连运了17天,共运了222次,问这些天中有多少天下雨?5.某食堂买来的面粉是米的5倍,如
10、果每天吃30千克米,75千克面粉,几天后米吃完了,而面粉还剩下225千克,这个食堂买来的米和面粉各多少千克?6.鸡和兔放在一只笼子里,共有29个头和92只脚,那么笼中有多少只兔?7.15元钱买50分邮票和20分邮票共63张,那么20分邮票与50分邮票相差多少张?8.人民路小学的教师和学生共100人去植树,教师每人栽3棵树,学生平均每3个人栽1棵,一共栽100棵。那么,有多少名学生参加植树?9.张三买了两种戏票一共30张,付出200元,找回5元。甲种票每张7元,乙种票每张6元。张三买了多少张甲种票?10.杨帆每学期的21次测验成绩全是4分或5分(老师采用5分评分制)。总共加起来是100分。他得了
11、多少次5分?11.给货主运2000箱玻璃。合同规定,完好运到一箱给运费5元,损坏一箱不给运费,还要赔给货主40元。将这批玻璃运到后收到运货款9190元,损坏了多少箱?12.20分和50分的邮票共36枚,共值9元9角,那么两种邮票分别有多少枚?13.有一堆土方共400方,有大小两辆汽车,大车一次拉了7方,小车一次拉4方,运完这堆土共拉了70车。那么大车拉了多少次?14.电视机厂每天生产电视机500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分。如果四天得了9931分,那么这四天生产了多少台合格电视机?15.松鼠妈妈采松子,晴天每天可采20个,雨天每天可采12个,它一
12、连几天采了112个松子,平均每天采14个,那么这几天当中共有几个雨天?16.有大小拖拉机共30台,今天一共耕地112公顷,大拖拉机每天耕地5公顷,小拖拉机每天耕地3公顷,大小拖拉机各有几台?17.现有大小塑料桶共50个,每个大桶可装果汁4千克,每个小桶可装果汁2千克,大桶和小桶共装果汁120千克。问大小塑料桶各有多少个?18.某运动员进行射击考核,共打20发子弹。规定每中一发记20分,脱靶一发扣12分,最后这名运动员共得240分。问这名运动员共打中几发?19.某校在组织篮、排球联赛之前一次拿出720元人民币,准备购置一些比赛用球。已知一个篮球比一个排球要贵20元,6个篮球和8个排球的价格相等。请你算一算,如果用这些钱都买篮球能买多少个?如果都买排球能买多少个?20蜘蛛有8条腿,蜻蜒有6条腿和2对翅膀,蝉有6条腿和一对翅膀。现有这三种小虫16只,共有110条腿和14对翅膀。问:每种小虫各几只?21搬运1000只玻璃瓶,规定安全运到1只可得搬运费3角,但打碎1只,不但不给搬运费,还要赔5角。如果运完后共得运费260元,那么,搬运中打碎了几只玻璃瓶?22、一辆卡车装运玻璃仪器360个,每个运费5元,若损坏一个仪器不但不给运费,还要赔50元,结果司机只收到运费1250元,问损坏了几个仪器?