ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:518.22KB ,
资源ID:580975      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-580975-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年高一数学上学期期中测试卷(二)北师大版.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年高一数学上学期期中测试卷(二)北师大版.docx

1、2020-2021学年北师大版高一数学上学期期中测试卷(二)学校:_姓名:_班级:_考号:_评卷人得分一、单选题(共12小题,每小题5分,共60分)1已知集合,则( )ABCD【答案】C【解析】【分析】根据函数定义域求出,根据定义域和对数运算求出,再求即可.【详解】对于集合,解得,所以集合,对于集合,解得,所以集合,所以.故选:C【点睛】本题主要考查集合的交集运算和不等式运算,属于基础题.2已知幂函数()在上是减函数,则n的值为( )AB1CD1和【答案】B【解析】【分析】先由函数是幂函数,让其系为1,即,得到或,再分别讨论,是否符合在上是减函数的条件.【详解】因为函数是幂函数所以所以或当时在

2、上是增函数,不合题意.当时在上是减函数,成立故选:B【点睛】本题主要考查了幂函数的定义及性质,还考查了运算求解的能力,属于基础题.3已知函数f(x)=x2m是定义在区间3m,m2m上的奇函数,则Af(m)f(1)Df(m)与f(1)大小不确定【答案】A【解析】【分析】根据奇函数的定义域关于原点对称,列方程求得的两个值,再根据定义域包括原点,排除其中一个值,由此得到的值和函数的解析式,进而得出正确的选项.【详解】因为幂函数f(x)是奇函数,奇函数的定义域必然关于原点对称,所以(3m)+(m2m)=0,解得m=1或m=3当m=1时,函数f(x)=x3,2x2,所以f(m)=f(1)f(1);当m=

3、3时,函数f(x)=,在x=0时无意义,不满足题意,舍去,故选A【点睛】本小题主要考查奇函数和偶函数定义域关于原点对称,考查奇函数的定义域,属于基础题.4下列哪一组函数相等()Afx=x与gx=x2xBfx=x2与gx=x4Cfx=x与gx=x2Dfx=x2与gx=3x6【答案】D【解析】【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否相同,从而可求得结果.【详解】A选项:fx定义域为R;gx定义域为:xx0 两函数不相等B选项:fx定义域为R;gx定义域为:xx0 两函数不相等C选项:fx定义域为R;gx定义域为:xx0 两函数不相等D选项:fx与gx定义域均为R,且gx=3x

4、6=x2=fx 两函数相等本题正确选项:D【点睛】本题考查相等函数的判断,关键是明确两函数相等要求定义域和解析式都相同,属于基础题.5已知,则的值为( )A-1B0C1D2【答案】A【解析】【分析】根据分段函数解析式,由内到外,代入求值即可.【详解】因为,所以,故选:A【点睛】本题主要考查了分段函数求值,属于容易题.6方程的实数解的个数是( )A0B1C2D3【答案】B【解析】【分析】将方程的解转化为函数的交点个数,画出函数图像得到答案.【详解】的实数解的个数即函数的图像和直线的交点个数.数形结合求得的图像和直的交点个数为1故选: 【点睛】本题考查了方程的解的个数问题,转化为函数的交点是解题的

5、关键.7函数的部分图象大致为( )ABCD【答案】B【解析】【分析】根据函数的奇偶性和在时函数值的特点,对选项进行排除,由此得出正确选项.【详解】因为是偶函数,所以排除A,C,当时,恒成立,所以排除D.故选:B.【点睛】本题考查函数的图像与性质,考查数形结合的数学思想以及推理论证能力.8设,则 ( )ABCD【答案】D【解析】【分析】根据指、对数的单调性直接将的范围求出来,然后再比较大小.【详解】因为,所以;所以,故选D.【点睛】指对数比较大小,常用的方法是:中间值分析法(与比较大小),单调性分析法(根据单调性直接写出范围).9已知,且,若函数在上是增函数,则实数的取值范围为( )ABC D【

6、答案】B【解析】【分析】令,首先在上恒成立,求出的范围,再根据的范围确定内层函数和外层函数的单调性,列不等式求解即可【详解】解:令(,且),则在上恒成立或或解得:,所以外层函数在定义域内是单调增函数,若函数在上是增函数,则内层函数在上是增函数,且,解得,实数的取值范围为,故选:B【点睛】本题主要考查复合函数的单调性,对数函数的单调性,二次函数的性质,体现了分类讨论的数学思想,属中档题10已知函数,若,则实数的取值范围是( )ABCD【答案】B【解析】【分析】先计算函数的定义域,再根据的单调性与奇偶性求解即可.【详解】由题的定义域满足,解得.又,故为奇函数.又,且在为减函数,故在为减函数.故为减

7、函数.故即.所以,解得.故选:B【点睛】本题主要考查了根据函数的奇偶性与单调性求解不等式的问题,需要根据题意判断函数的奇偶性与单调性,并结合定义域进行求解,属于中档题.11下列函数的定义域均为,对于任意不相等的正数,均有 成立的函数有( ),ABCD【答案】A【解析】【分析】性质说明函数是增函数,判断各函数的单调性判断即可【详解】对于任意不相等的正数,均有,在上是增函数在上是增函数;在是递增,在上也递增;,由对勾函数知在上是增函数,但在上函数是常数函数,不满足单调性定义因此在上不是增函数只有满足故选:A.【点睛】本题考查函数的单调性,掌握单调性的定义是解题关键注意单调性定义的变化形式,如或者都

8、揭示函数是增函数,同样或者都揭示函数是减函数12已知函数,且是单调递增函数,则实数的取值范围是()ABCD【答案】A【解析】【分析】根据指数函数以及一次函数的图像与性质求出a的范围即可【详解】解:由是单调递增函数,可知:,解得:故选:A【点睛】本题考查分段函数的图像与性质,考查函数的单调性,注意分界点处函数值的关系.评卷人得分二、填空题(共4小题,每小题5分,共20分)13函数的定义域为_【答案】x0x1【解析】【分析】【详解】【考点】函数的定义域及其求法. 14若二次函数在区间上是单调増函数,则实数m的取值范围是_【答案】【解析】【分析】由单调性可知函数开口方向向下,对称轴大于等于,求解得到

9、结果.【详解】函数为二次函数 函数在区间上是单调増函数,解得实数的取值范围是本题正确结果:【点睛】本题考查利用单调性求解参数范围问题,解题关键是明确二次函数单调性是由开口方向和对称轴决定的.15已知是奇函数,当时,若,则_【答案】2【解析】【分析】由题意结合奇函数的性质可得,再由对数的运算性质即可得解.【详解】因为是奇函数,当时,所以,即,所以,解得.故答案为:.【点睛】本题考查了函数奇偶性的应用,考查了对数运算性质的应用及运算求解能力,属于基础题.16函数的零点均是正数,则实数b的取值范围是_.【答案】【解析】【分析】将问题转化为方程的根都是正根的问题,利用韦达定理即可处理.【详解】因为函数

10、的零点均是正数,故方程的根都是正根,故当时,需满足解得.当时,解得,此时方程为,方程的根满足题意.综上所述:.故答案为:.【点睛】本题考查根据二次函数零点的情况求参数范围,涉及一元二次方程根的分布,属综合基础题.评卷人得分三、解答题(共6小题,17题10分,18-22题12分,共70分)17已知集合,.(1)若,求;(2)若,求实数a的取值范围.【答案】(1) (2)【解析】【分析】(1)时,求出集合,进而可求得;(2),得,分,讨论,列关于的不等式解出来即可.【详解】(1)时,.所以,(2),若时,解得,符合题意;若时,解得.综合可得以.【点睛】本题考查集合的运算,注意不要遗漏当时,的情况,

11、是基础题.18计算:(1);(2)【答案】(1)(2)-1【解析】【分析】(1)对指数幂化简整理,根据指数幂的运算法则,即可求解;(2)根据对数运算法则和对数恒等式,即可得出结论.【详解】解:(1).(2)【点睛】本题考查分数指数幂、对数的运算,熟记计算公式,属于基础题.19已知函数是上的奇函数.(1)先求常数的值再求.(2)判断并用定义证明函数单调性.【答案】(1),;(2)见解析.【解析】【分析】(1)先由求出的值,进而求出函数的解析式即可求出;(2)利用单调性的定义证明即可.【详解】(1)因为是上的奇函数,所以,即,此时,则;(2)函数在上单调递减,任取、,且,则,易知,所以,即,所以函

12、数在上单调递减.【点睛】本题主要考查了利用函数的奇偶性求参数的值、函数的求值、利用定义证明函数单调性等问题,试题综合性强,属常规考题.20已知函数.(1)作出函数的图象,并写出其单调区间;(2)若关于的方程有一正一负两个实根,求实数的取值范围.【答案】(1)递增区间,递减区间(2).【解析】【分析】(1)把函数的解析式,分类讨论去掉绝对值,得到分段函数,作出函数的图象,结合图象,即可求解函数的单调区间;(2)转化成关于的方程有一正一负两个实根,即函数与直线有2个交点,且两个交点位于轴的两侧,结合函数的图象,即可求解.【详解】(1)由题意,函数可化为,可得,当时,当时,其图象如图所示:结合图象可

13、得,函数的递增区间为,递减区间为.(2)根据题意,函数,则,若关于的方程有一正一负两个实根,即函数与直线有2个交点,且两个交点位于轴的两侧,结合函数的图象可得,求实数的取值范围.【点睛】本题主要考查了分段函数的应用,以及函数与方程的综合应用,其中解答中根据函数的解析式,准确作出函数的图象,结合图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题.21设函数与的定义域都是且,是奇函数, 是偶函数,且.(1)求和的解析式;(2)求的值.【答案】(1),;(2)【解析】【分析】(1)将代入,根据函数的奇偶性,化简求得和的解析式.(2)计算出,由此求得所求表达式的值.【详解】(

14、1)依题意,将代入得,由于是奇函数, 是偶函数,所以. +得,所以.-得,所以.(2)由(1)得,所以,所以.【点睛】本小题主要考查根据函数的奇偶性求解析式,考查函数的性质,考查化归与转化的数学思想方法,属于基础题.22设是定义在上的奇函数,且当时,.()求函数的解析式;()若对任意的,不等式恒成立,求实数的取值范围【答案】()()【解析】【分析】()先由函数奇偶性得;再设,则,根据已知函数解析式,结合奇函数的性质,即可求出结果;()先由题意,将不等式化为,再由函数单调性,得到,推出,求出,即可得出结果.【详解】()由题意知,.设,则,故,又因为是奇函数,故,所以.()由,不等式,等价于,因为,所以其在上是增函数,即,当时,得,故实数的取值范围是.【点睛】本题主要考查由函数奇偶性求函数解析式,由不等式恒成立求参数范围,熟记函数奇偶性与单调性的概念即可,属于常考题型.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1