ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:24.36KB ,
资源ID:580301      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-580301-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020-2021学年江苏省盐城市某校高一(上)期中考试数学试卷.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

2020-2021学年江苏省盐城市某校高一(上)期中考试数学试卷.docx

1、2020-2021学年江苏省盐城市某校高一(上)期中考试数学试卷一、选择题)1. 不等式2x2-7x+60的解集为()A.x|x32B.x|x2C.x|32x2D.x|-2x-322. 已知a,bR,那么“ab”是“ab”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 函数f(x)=ex-1,x1的最小值是()A.22+1B.42+1C.42D.225. 已知正实数x,y满足xy=x+2y,则xy的最小值为( )A.4B.8C.10D.126. 不等式log2x-1+12log12x3+20的解集为( )A.2,3)B.(2,3C.(2,4D.2,4)7

2、. 已知函数fx是定义在R上的奇函数,且对任意xR满足fx+2=fx,又当0x1时, fx=42x,则f-52+f2021=()A.-4B.0C.-2D.18. 已知方程a=|1-21-x|-1有两个异根,则实数a的取值范围为()A.-1,1)B.(-1,1C.-1,0D.(-1,0二、多选题)9. 设全集U=0,1,2,3,4,5,集合A=0,1,3,B=0,1,4,5,则( )A.AB=0,1B.UB=3C.AB=0,1,3,4,5D.集合A的真子集个数为710. 如果ab0,那么下列不等式成立的是( )A.1ab2C.-ab-a2D.-1a0,b1为奇函数,则负实数a的值为_.15. 若

3、“存在xR,使得m2x+amx+a+10”为假命题(其中m0,m1),则实数a的取值范围为_.四、解答题)16. (1)求值:log5125+lg1000+lne+2log23;(2)解不等式a2x+1a1-x(a0且a1).17. 设命题p:实数x满足x-mx-3m0;命题q:实数x满足log2x2-5log2x+40. (1)若m=1,p,q都是真命题,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围18. 已知函数fx是定义在-2,2上的奇函数,且当x0时,fx=2x+x+1. (1)求函数fx的解析式;(2)判断函数fx在0,+上的单调性并证明;19. 对于正实数

4、a,b,已知:若a+b=1,则1a+1b4;若a+b=1,则1a+4b9;若a+b=2,则4a+25b492. (1)请根据上述结果完成猜想:若x,y,a,b均为正实数,则x2a+y2b_,证明并指明等号成立的条件;(2)利用上述不等式解决下列问题:已知非负实数x,y满足若2x+y=2,求2x+1+9y+1的最小值20. 已知函数fx=lgx-1-lgx+1,gx=2x. (1)令lg3=t,lg2=s,当x1,2时,求函数fgx的值域(结果用t和s表示);(2)若不等式g2m-x2a1-x,得当a1时,原不等式化为2x+11-x,解得x0, 原不等式的解集为0,+;当0a1时,原不等式化为2

5、x+11-x,解得x0, 原不等式的解集为-,0.17. 解:(1)当m=1时,p:x-1x-30, (x-1)(x-3)0,解得x(1,3).q:(log2x)2-5log2x+40,令log2x=t,则t2-5t+40,(t-4)(t-1)0,解得1t4, 1log2x4,得2x16, pq=2,3).故若m=1,p,q都是真命题,实数x的取值范围为2,3).(2)当p是q的充分不必要条件时, p:(x-m)(x-3m)0),q:2,16, p:(m,3m)q:2,16, m0,m2,3m16,解得2m163, 当p是q的充分不必要条件时,m2,163.18. 解:(1)设x0,f(-x)

6、=-2x+-x+1.因为f(x)是-2,2上的奇函数,所以f(-x)=-f(x),又-f(x)=-2x+-x+1,所以f(x)=2x-x-1.综上:f(x)=2x+x+1,0x2,0,x=0,2x-x-1,-2x0.(2)函数f(x)在0,+上是单调增函数,证明如下:设x1,x20,+,且x1x2,f(x1)-f(x2)=2x1+x1+1-2x2-x2-1,=2x1-x2+x1-x2.由x1x2,x1,x20,+,所以x1-x20,x1-x20,即2x1-x2+x1-x20,所以得:f(x1)0,y0,a0,b0,不等式两边同乘aba+b,得ba+bx2+aa+by2abx2+2xy+y2,即

7、bx2-2abxy+ay20,即bx-ay20,当且仅当“bx=ay”,即xa=yb时,取等号.故x2a+y2b(x+y)2a+b成立,当且仅当xa=yb时取等号.2 2x+1+9y+1=42x+2+9y+1(2+3)22x+2+y+1=5,当且仅当x=0,y=2时取等号, 2x+1+9y+1的最小值为5.20. 解:(1)f(g(x)=f(2x)=lg(2x-12x+1).取任意1x1x22,f(g(x1)-f(g(x2)=lg(2x1-12x1+1)-lg(2x2-12x2+1)=lg(2x1-1)(2x2+1)(2x1+1)(2x2-1). 1x1x22, 02x1+12x2+1,02x

8、1-12x2-1. (2x1-1)(2x2+1)-(2x1+1)(2x2-1)=2(2x1-2x2),且2x12x2, (2x1-1)(2x2+1)(2x1+1)(2x2-1), lg(2x1-1)(2x2+1)(2x1+1)(2x2-1)0, f(g(x1)f(g(x2), f(g(x)在1,2上单调递增, f(g(x)min=f(g(1)=-lg3=-t,f(g(x)max=f(g(2)=t+s-1, f(g(x)-t,t+s-1.(2)取任意m-1x1x2m+1,则g(x1)-g(x2)=2x1-2x2. x1x2, 2x1-2x20,即g(x1)g(x2), g(x)在m-1,m+1上

9、单调递增. g(2m-x2)g(m+x), 2m-x2m.设h(x)=x2+x.当m+1-12,即m-32时,h(x)min=h(m+1), m2+2m+1+m+1m,解得m-32.当m-1-12m+1时,h(x)min=h(-12),即可得到m-1-12,m-14,解得-32mm,解得m2.综上所述,m(-,-14)(2,+).21. 解:(1)设二次函数f(x)的解析式为f(x)=cx2+dx+e, a,b是方程x2-3x+1=0的两根, a+b=3,ab=1. fx满足fa=b,fb=a,f1=1, f(a)+f(b)=c(a2+b2)+d(a+b)+2e=a+b,f(1)=c+d+e,

10、 7c+3d+2e=3,c+d+e=1, e=4c,d=1-5c,即f(x)=cx2+(1-5c)x+4c,由x2-3x+1=0可得一根为x=3-52,y=3+52,将x=3-52,y=3+52代入f(x),得c=1,d=-4,e=4, f(x)的解析式为f(x)=x2-4x+4.(2)由(1)得f(x)=x2-4x+4, f(x+m)x-94等价于x2+2mx+m2-4x-4m+4x-94,即x2+(2m-5)x+m2-4m+2540,又 x52,n, 0,m2+m0,解得-1m0.设g(x)=x2+(2m-5)x+m2-4m+254, g(x)的对称轴为x=-2m-52, 当m取-1时n取得最大值, nmax=92.综上,n的最大值为92,此时m的值为-1.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1