ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:1.22MB ,
资源ID:576433      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-576433-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(内蒙古集宁一中西校区2019-2020学年高二下学期期中考试数学(理)试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

内蒙古集宁一中西校区2019-2020学年高二下学期期中考试数学(理)试题 WORD版含解析.doc

1、集宁一中西校区2019-2020学年第二学期期中考试高二年级理科数学试题第卷(选择题,共60分)一、单选题1.已知集合,则()A. B. C. D. 【答案】C【解析】【分析】利用对数函数的单调性对集合化简得x|0x1,然后求出AB即可【详解】x|0x2,AB1,故选C【点睛】考查对数不等式的解法,以及集合的交集及其运算2.已知复数z满足(12i)z34i,则|z|( )A. B. 5C. D. 【答案】C【解析】【分析】利用复数模的运算性质及其计算公式即可得出.【详解】(12i)z34i,|12i|z|34i|,则|z|.故选:C.【点睛】本题主要考查的是复数的四则运算,以及复数模的求法,是

2、基础题.3.下列说法正确的有( )在回归分析中,可以借助散点图判断两个变量是否呈线性相关关系在回归分析中,可以通过残差图发现原始数据中的可疑数据,残差平方和越小,模型的拟合效果越好在回归分析模型中,相关系数的绝对值越大,说明模型的拟合效果越好在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据散点图的应用、利用“残差”的意义、相关系数的作用、回归方程的意义,即可得出正确的判断.【详解】对于,可以借助散点图直观判断两个变量是否呈线性相关关系,所以正确;对于,可用残差的平方和判断模型的拟合效果,残差平方和越小,

3、模型拟合效果越好,所以正确;对于,相关系数的绝对值越大,只能说明两个变量具有较强的相关性,不能作为分析模型的拟合效果好坏的依据,应该是相关指数越大,模型的拟合效果越好,所以错误;对于,在回归直线方程中,当解释变量每增加1个单位时,预报变量增加0.1个单位,所以正确故选:C.【点睛】本题考查回归分析以及线性回归直线方程,要注意区分“相关系数”与“相关指数”,属于基础题.4.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为( )附:若,则,A. 0.6826B. 0.8413C. 0.8185

4、D. 0.9544【答案】C【解析】【分析】根据服从的正态分布可得,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,则,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.5.在线性回归模型中,分别选择了4个不同的模型,它们的相关指数依次为0.36、0.95、0.74、0.81,其中回归效果最好的模型的相关指数为()A. 0.95B. 0.81C. 0.74D. 0.36【答案】A【解析】【分析】比较相关指数的大小,越接近于1,模型的拟合效果越好【详解】在两个变量与的回归模型中,它们的相

5、关指数越接近于1,模型的拟合效果越好,在题目所给的四个数据中0.95是最大的相关指数,所以选A【点睛】本题考查相关指数,在回归模型中,相关指数 越接近于1,模型的拟合效果越好,属于简单题6.袋中共有6个除了颜色外完全相同的球,其中有4个白球,2个红球从袋中不放回地逐个取球,取完红球就停止,记停止时取得的球的数量为随机变量,则( )A. B. C. D. 【答案】A【解析】【分析】根据排列组合知识,结合古典概型的概率公式,即可求解.【详解】最后一次取到的一定是红球,前两次是一红球一白球,故选:A.【点睛】本题考查随机变量的概率,应用排列组合求古典概型的概率,属于基础题.7.函数的图像大致为( )

6、A. B. C. D. 【答案】D【解析】【详解】试题分析:因为,所以排除A,C,当函数在轴右侧靠近原点的一个较小区间时,函数单调递增,故选D.考点:函数图象与函数性质8.在极坐标系中,若点,则的面积为 ( )A. B. C. D. 【答案】C【解析】的面积为 ,选C.9.过椭圆:(为参数)的右焦点作直线:交于,两点,则的值为()A. B. C. D. 不能确定【答案】B【解析】【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得的值.【详解】消去参数得到椭圆的普通方程为,故焦点,设直线的参数方程为(为参数),代入椭圆方程并化简得.故

7、(异号).故.故选B.【点睛】本小题主要考查椭圆的参数方程化为普通方程,考查直线和椭圆的位置关系,考查利用直线参数的几何意义解题,考查化归与转化的数学思想方法,属于中档题.10.函数有三个不同的零点,则的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】先对函数求导,利用导数研究出函数的单调性与极值,再利用零点个数确定极值正负,据此列式求解即可.【详解】,则,令或,令,因此函数在上单调递增,在上单调递减,在上单调递增,所以函数在有极大值,在时有极小值,因为函数有三个不同的零点,所以,故选:B.【点睛】本题考查利用导数研究函数的零点问题,涉及函数的单调性与极值,难度不大.11.某

8、珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”根据以上条件,可以判断偷珠宝的人是( )A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【详解】试题分析:若甲说的是真话,则乙、丙、丁都是说假话,所以丁偷了珠宝,所以,丙说的也是真话,与只有一个人说真话相矛盾,所以甲说的假话,偷珠宝的人是甲考点:推理与证明12.若函数有两个不同的极值点,则实数的取值范围是()A. B. C. D. 【答案】D【解析】【分析】求出函数的导数,结合二次函数的性质得到关于a的不等式组,解出即可【详解】的定义域是(0,+),若函数有

9、两个不同的极值点,则在(0,+)由2个不同的实数根,故,解得:,故选D【点睛】本题考查了函数的极值问题,考查导数的应用以及二次函数的性质,是一道中档题第卷(非选择题)三、填空题(满分20分)13.设函数是奇函数的导函数,当时,则使得成立的的取值范围是 【答案】(,1)(0,1)【解析】【详解】解:设,则的导数为:,当时总有成立,即当时,恒小于0,当时,函数为减函数,又,函数为定义域上的偶函数又,函数的图象性质类似如图:数形结合可得,不等式或,或f(x)0成立x的取值范围是(-,-1)(0,1)考点:函数的单调性与导数的关系14.已知的展开式中的系数是35,则_._.【答案】 (1). 1 (2

10、). 1【解析】【分析】利用二项展开式的通项求参数,令,求得,令求得,然后可求得【详解】由的展开式的通项令得,所以由解得,所以得令得令得,所以故答案为:1;1.【点睛】本题考查了二项展定理的应用,赋值法求参数的应用,掌握二项展开式的通项是解题的关键,属于一般难度的题.15.椭圆经过变换后所得曲线的焦点坐标为_.【答案】【解析】【分析】代入中即可得到变换后的曲线方程,进一步可得焦点坐标.【详解】由,代入得.变换后所得曲线的焦点坐标为.故答案为:【点睛】本题考查曲线的伸缩变换,要注意哪个是变换前的坐标,哪个是变换后的坐标,“谁代谁”,是一道容易题.16.已知某种高炮在它控制的区域内击中敌机的概率为

11、0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置_门高炮?(用数字作答,已知,)【答案】【解析】【分析】设需要至少布置门高炮,则,由此能求出结果【详解】解:设需要至少布置门高炮,某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,解得,需要至少布置11门高炮故答案为:【点睛】本题考查概率的求法,考查次独立重复试验中事件恰好发生次的概率计算公式等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题三、解答题(满分70分)17.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各

12、随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制表如图:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据表中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B的每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(3)根据表中数据估算两公司的每位员工在该月所得的劳务费.【答案】(1)平均数为,众数为33;(2)详见解析;(3)甲公司被抽取员工该月收入元,乙公

13、司被抽取员工该月收入元.【解析】【分析】(1)直接利用茎叶图中数据求甲公司员工A投递快递件数的平均数和众数.(2)由题意能求出X的可能取值为136,147,154,189,203,分别求出相对应的概率,由此能求出X的分布列和数学期望.(3)利用(2)结果能估算算两公司的每位员工在该月所得的劳务费.【详解】(1)甲公司员工A投递快递件数的平均数为:,众数为33.(2)设a为乙公司员工B投递件数,则当时,元,当时,元,X的可能取值为136,147,154,189,203,X的分布列为:X136147154189203P(元).(3)根据图中数据,由(2)可估算:甲公司被抽取员工该月收入元,乙公司被

14、抽取员工该月收入元.【点睛】本题主要考查离散型随机变量的分布列与期望,涉及到茎叶图、平均数等知识,考查学生的数学运算能力,是一道容易题.18.为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:参加文体活动不参加文体活动合计学习积极性高80学习积极性不高60合计200已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.(1)请将上面的列联表补充完整;(2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;(3)若从不参加文

15、体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.附:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,其中.【答案】(1)表格见解析;(2)有99.9%的把握认为学习积极性高与参加文体活动有关,理由见解析;(3)【解析】【分析】(1)计算学习积极性不高的有人,完善列联表得到答案.(2),对比临界值表得到答案.(3)有2人学习积极性高,设为、,有3人学习积极性不高,设为、,列出所有情况,统计满足条件的情况,得到概率.【详解】(1)根据题意,全部200

16、人中随机抽取1人,抽到学习积极性不高的学生的概率为,则学习积极性不高的有人,据此可得:列联表如下:参加文体活动不参加文体活动合计学习积极性高8040120学习积极性不高206080合计100100200(2)根据题意,由列联表可得:;故有99.9%的把握认为学习积极性高与参加文体活动有关;(3)根据题意,从不参加文体活动的同学中按照分层抽样的方法选取5人,有2人学习积极性高,设为、,有3人学习积极性不高,设为、,从中选取2人,有、,共10种情况,其中至少有1人学习积极性不高的有、,共9种情况,至少有1人学习积极性不高的概率.【点睛】本题考查了列联表,独立性检验,概率的计算,意在考查学生的计算能

17、力和应用能力.19.已知函数.(1)若在上存在极大值,求的取值范围;(2)若轴是曲线的一条切线,证明:当时,.【答案】(1);(2)证明见解析【解析】【分析】(1)求得的导函数,对分成三种情况,结合在上存在极大值,求得的取值范围.(2)首先根据轴是曲线的一条切线求得的值,构造函数,利用导数求得在区间上的最小值为,由此证得,从而证得不等式成立.【详解】(1)解:,令,得,.当时,单调递增,无极值,不合题意;当时,在处取得极小值,在处取得极大值,则,又,所以;当时,在处取得极大值,在处取得极小值,则,又,所以.综上,的取值范围为.(2)证明:由题意得,或,即(不成立),或,解得.设函数,当或时,;

18、当时,.所以在处取得极小值,且极小值为.又,所以当时,故当时,.【点睛】本小题主要考查利用导数研究函数的极值,考查利用导数证明不等式,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.20.已知函数.(1)讨论函数的单调性;(2)当时,恒成立,求实数的取值范围.【答案】(1)见解析;(2)【解析】【分析】(1)求导得到,讨论和两种情况,分别计算得到答案.(2)时, ,令,求函数的最小值为,得到答案.【详解】(1)函数的定义域为,若,则,所以在上单调递增;若,令,则,当)时,单调递减;当时,单调递增;综上所述,函数上单调递增,时,函数在上单调递减,在上单调递增.(2)当时,即

19、,令,则,令,则,当时,单调递增,所以当时,单调递减,当时,单调递增,故,所以的取值范围是.【点睛】本题考查了函数的单调性,恒成立问题,将恒成立问题通过参数分离转化为最值问题是解题的关键.21.在直角坐标系中,曲线的参数方程(为参数),直线的参数方程(为参数).(1)求曲线在直角坐标系中的普通方程;(2)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,当曲线截直线所得线段的中点极坐标为时,求直线的倾斜角.【答案】(1);(2).【解析】【分析】(1)消去参数后化简整理即可得到曲线的普通方程;(2)将直线的参数方程代入曲线的普通方程中,可得到关于的一元二次方程,由韦达定理并结合参数的几何意义可得

20、,从而求得,最后写出直线的倾斜角即可.【详解】(1)由曲线的参数方程 (为参数), 可得:,由,得:,曲线的参数方程化为普通方程为:;(2)中点的极坐标化成直角坐标为,将直线的参数方程代入曲线的普通方程中,得:,化简整理得:,即,即,又,直线的倾斜角为.【点睛】本题主要考查参数方程与普通方程的互化,考查直线参数方程中的几何意义的应用,考查逻辑思维能力和运算能力,属于常考题.22.在直角坐标系中,圆的参数方程为以为极点,轴的非负半轴为极轴建立极坐标系.(1)求圆的普通方程;(2)直线的极坐标方程是,射线:与圆的交点为、,与直线的交点为,求线段的长.【答案】(1);(2)1.【解析】【分析】参数方程化为普通方程可得圆的普通方程为.圆的极坐标方程得,联立极坐标方程可得,结合极坐标的几何意义可得线段的长为1.【详解】圆的参数方程为消去参数可得圆的普通方程为.化圆的普通方程为极坐标方程得,设,则由解得,设,则由解得,.【点睛】本题主要考查参数方程与普通方程的应用,极坐标的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3