ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.09MB ,
资源ID:574240      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-574240-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北京市通州区2020届高三数学上学期期末考试试题(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

北京市通州区2020届高三数学上学期期末考试试题(含解析).doc

1、北京市通州区2020届高三数学上学期期末考试试题(含解析)第一部分(选择题 共40分)一选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】根据并集运算法则求解即可.【详解】由题:集合,则.故选:A【点睛】此题考查根据描述法表示的集合,并求两个集合的并集.2.在复平面内,复数(其中是虚数单位)对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】化简复数,得出其在复平面内的点,即可判定位置.【详解】由题:复数,在复平面内对应的点为,

2、位于第一象限.故选:A【点睛】此题考查复数的基本运算和复数对应复平面内的点的辨析,关键在于准确计算,熟练掌握几何意义.3.已知点A(2,a)为抛物线图象上一点,点F为抛物线的焦点,则等于( )A. 4B. 3C. D. 2【答案】B【解析】【分析】写出焦点坐标,根据抛物线上点到焦点距离公式即可求解.【详解】由题:点A(2,a)为抛物线图象上一点,点F为抛物线的焦点,所以,根据焦半径公式得:.故选:B【点睛】此题考查求抛物线上的点到焦点的距离,结合几何意义根据焦半径公式求解即可.4.若,则下列各式中一定正确的是( )A. B. C. D. 【答案】D【解析】【分析】若,所以AC错;,所以B错;若

3、,所以D正确.【详解】由题:若,根据反比例函数性质,所以A错误;若,取,所以B错;若,根据指数函数性质所以C错;若,根据对数函数性质,所以D正确.故选:D【点睛】此题考查不等式的基本性质,结合不等关系和函数单调性进行判断,也可考虑特值法推翻命题.5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为( )A. B. C. D. 【答案】C【解析】【分析】根据三视图还原几何体,即可求解.【详解】根据三视图还原几何体如图所示:其中,平面,由图可得:,所以,所以最长的棱长.故选:C【点睛】此题考查根据三视图还原几何体,计算几何体中的棱长,关键在于正确认识三视图,准确还原.6.甲乙丙丁四名同学和一名老

4、师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为( )A. 24B. 12C. 8D. 6【答案】C【解析】【分析】根据特殊元素优先考虑原则,先排乙,再排甲,结合左右对称原则求解.【详解】由题:老师站中间,第一步:排乙,乙与老师相邻,2种排法;第二步:排甲,此时甲有两个位置可以站,2种排法;第三步:排剩下两位同学,2种排法,所以共8种.故选:C【点睛】此题考查计数原理,关键在于弄清计数方法,根据分步和分类计数原理解决实际问题.7.对于向量, “”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【

5、解析】【分析】根据向量的运算法则:“”不能推出“”, “”能够推出“”.【详解】当时,满足,不能推出,若,则,所以,所以“”是“”的必要不充分条件.故选:B【点睛】此题考查充分条件与必要条件的关系判断,关键在于弄清向量间的关系,正确辨析即可.8.关于函数有以下三个判断函数恒有两个零点且两个零点之积为-1;函数恒有两个极值点且两个极值点之积为-1;若是函数的一个极值点,则函数极小值为-1.其中正确判断的个数有( )A. 0个B. 1个C. 个D. 个【答案】C【解析】【分析】函数的零点个数即的根的个数,利用判别式求解;对函数求导讨论导函数的零点问题即可得极值关系.【详解】因为,方程,所以关于的方

6、程一定有两个实根,且两根之积为-1,所以恒有两个零点且两个零点之积为-1,即正确;,对于,所以恒有两个不等实根,且导函数在这两个实根附近左右异号,两根之积为,函数恒有两个极值点且两个极值点之积为,所以错误;若是函数的一个极值点, ,则,所以函数的增区间为,减区间为,所以函数的极小值为,所以正确.故选:C【点睛】此题考查函数零点问题,利用导函数导论单调性和极值问题,综合性比较强.第二部分(非选择题 共110分)二填空题:本大题共6小题,每小题5分,共30分.9.已知向量,若,则_.【答案】【解析】【分析】根据向量垂直,数量积为0列方程求解即可.【详解】由题:,所以,所以,解得:.故答案为:【点睛

7、】此题考查向量数量积的坐标运算,根据两个向量垂直,数量积为0建立方程计算求解.10.在公差不为零的等差数列an中,a1=2,且a1,a3,a7依次成等比数列,那么数列an的前n项和等于_.【答案】【解析】【分析】根据a1,a3,a7依次成等比数列,求出公差,即可求解.【详解】在公差不为零的等差数列an中,a1=2,设公差为且a1,a3,a7依次成等比数列,即,所以,所以数列an的前n项和.故答案为:【点睛】此题考查等差数列基本量的计算,根据等比中项的关系列出方程解出公差,根据公式进行数列求和.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为_.【答案】【

8、解析】【分析】根据两条渐近线互相垂直得出渐近线方程,即求出的值,结合焦点坐标即可求解.【详解】由题双曲线焦点在轴,设双曲线方程,两条渐近线互相垂直,即,得,又因为右焦点坐标为,所以,解得,所以双曲线的标准方程为:.故答案为:【点睛】此题考查根据渐近线的关系结合焦点坐标求双曲线的基本量,进而得出双曲线的标准方程,考查通式通法和基本计算.12.在中, ,则_.【答案】【解析】【分析】根据正弦定理建立等量关系求解即可.【详解】在中,由正弦定理得:,所以.故答案为:【点睛】此题考查正弦定理的应用,结合三角恒等变换二倍角公式,求三角函数值,关键在于准确掌握基本计算方法正确求解.13.已知均为大于0的实数

9、,给出下列五个论断:,.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题_.【答案】推出(答案不唯一还可以推出等)【解析】【分析】选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.【详解】已知均为大于0的实数,选择推出.,则,所以.故答案为:推出【点睛】此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划

10、要求:道路PB,QA不穿过花园.已知,(CD为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m元/千米.在规划要求下,修建道路总费用的最小值为_元.【答案】【解析】【分析】根据几何关系考虑道路不穿过花园,求解最小距离,即可得到最小费用.【详解】如图:过点作直线交于,取与圆的交点,连接,则,过点作直线交于,过点作直线交于,根据图象关系可得,直线上,点左侧的点与连成线段不经过圆内部,点右侧的点与连成的线段不经过圆的内部,最短距离之和即,根据几何关系:,所以,所以,所以,最小距离为2.1千米.修建道路总费用的最小值为元.故答案为:【点睛】此题考查与圆相关的几何性质,根据几何

11、性质解决实际问题,需要注意合理地将实际问题抽象成纯几何问题求解.三解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值.【答案】(1);(2) 最小值0;最大值【解析】【分析】(1)对函数进行三角恒等变换得,即可得最小正周期;(2)整体考虑的取值范围,求出最大值和最小值.【详解】解: (1) f(x)最小正周期T =;(2)因为,所以所以当,即时,f(x)取得最小值;当,即时,f(x)取得最大值,所以f(x)在区间上的最小值0;最大值.【点睛】此题考查利用三角恒等变换对函数进行化简,求最

12、小正周期和闭区间上的值域,关键在于利用公式准确化简,正确求值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如下表: 比例 学校等级学校A学校B学校C学校D学校E学校F学校G学校H优秀8%3%2%9%1%22%2%3%良好37%50%23%30%45%46%37%35%及格22%30%33%26%22%17%23%38%不及格33%17%42%35%32%15%38%24%(1)从8所学校中随机选出一所学校,求该校为先进校的概率;(2

13、)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(3)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)【答案】(1) ;(2)见解析; (3)S12=S22【解析】【分析】(1)统计出健康测试成绩达到良好及其以上的学校个数,即可得到先进校的概率;(2)根据表格可得:学生不及格率低于30%的学校有学校BFH三所, 所以X的取值为0,1,2,分别计算出概率即可得到分布列;(3)考虑优秀的比例为随机变量Y,则良好及以下的比例之和为Z=1-Y,根据方差关系可得两个方差相等.【详解】解:( 1)

14、8所学校中有ABEF四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40% , 所以从8所学校中随机取出一所学校,该校为先进校的概率为;(2)8所学校中,学生不及格率低于30%的学校有学校BFH三所,所以X的取值为0,1,2. 所以随机变量X的分布列为:X012P(3)设优秀的比例为随机变量Y,则良好及以下的比例之和为Z=1-Y,则,所以:S12=S22.【点睛】此题考查简单几何概率模型求概率,求分布列,以及方差关系的辨析,关键在于熟练掌握分布列的求法和方差关系.17.如图,在四棱锥S-ABCD中,底面ABCD为直角梯形,AD/BC,SAD =DAB= ,SA=3,SB=5,. (1)

15、求证:AB平面SAD;(2)求平面SCD与平面SAB所成的锐二面角的余弦值;(3)点E,F分别为线段BC,SB上的一点,若平面AEF/平面SCD,求三棱锥B-AEF的体积.【答案】(1) 见解析;(2) ; (3)1【解析】分析】(1)通过证明,得线面垂直;(2)结合第一问结论,建立空间直角坐标系,求出两个平面的法向量,即可得二面角的余弦值;(3)根据面面平行关系得出点F的位置,即可得到体积.【详解】(1)证明:在中,因为,所以. 又因为DAB=900所以, 因为所以平面SAD. (2)解:因为 AD,, 建立如图直角坐标系:则A(0,0,0)B(0,4,0), C(2,4,0),D(1,0,

16、0),S(0,0,3).平面SAB的法向量为.设平面SDC的法向量为所以有即,令,所以平面SDC的法向量为 所以 (3)因为平面AEF/平面SCD,平面AEF平面ABCD=AE,平面SCD平面ABCD=CD,所以,平面AEF平面SBC=EF,平面SCD平面SBC=SC,所以由,AD/BC得四边形AEDC为平行四边形.所以E为BC中点. 又,所以F为SB中点.所以F到平面ABE的距离为,又的面积为2,所以.【点睛】此题考查立体几何中的线面垂直的证明和求二面角的大小,根据面面平行的性质确定点的位置求锥体体积.18.已知椭圆C:的长轴长为4,离心率为,点P在椭圆C上.(1)求椭圆C的标准方程;(2)

17、已知点M (4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.【答案】(1) ; (2) .【解析】【分析】(1)根据长轴长和离心率求出标准方程;(2)取PN的中点为Q,以PM为直径的圆恰好经过线段PN的中点,所以MQNP,根据垂直关系建立等量关系,结合点P的坐标取值范围,即可得解.【详解】解:( 1)由椭圆的长轴长2a=4,得a=2又离心率,所以所以.所以椭圆C的方程为:. (2)法一:设点,则所以PN的中点,,因为以PM为直径的圆恰好经过线段PN的中点所以MQNP,则, 即,又因为,所以,所以,函数的值域为所以所以. 法二:设点,则.设PN的中点为Q因为以

18、PM为直径的圆恰好经过线段PN的中点所以MQ是线段PN的垂直平分线,所以即所以,函数的值域为所以,所以.【点睛】此题考查求椭圆的标准方程,根据垂直关系建立等量关系,结合椭圆上的点的坐标特征求出取值范围.19.已知函数.(1)求曲线在点处的切线方程;(2)求函数零点的个数.【答案】(1) ;(2)零点的个数为2.【解析】【分析】(1)求出导函数,得出,即可得到切线方程;(2)根据为偶函数,只需讨论在的零点个数,结合导函数分析单调性即可讨论.【详解】解:( 1)因为,所以, 又因为,所以曲线在点处的切线方程为;(2)因为为偶函数, 所以要求在上零点个数,只需求在上零点个数即可. 令,得,, 所以在

19、单调递增,在单调递减,在单调递增,在单调递减,在单调递增列表得:0+0-0+0-01极大值极小值极大值极小值由上表可以看出在()处取得极大值,在()处取得极小值,; . 当且时 (或,) 所以在上只有一个零点函数零点的个数为2.【点睛】此题考查求函数在某点处的切线方程,求函数零点的个数,根据奇偶性分类讨论,结合单调性和极值分别考虑函数值的符号得解.20.已知项数为的数列满足如下条件:;.若数列满足,其中,则称为的“伴随数列”.(1)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(2)若为的“伴随数列”,证明:;(3)已知数列存在“伴随数列”,且,

20、求m的最大值.【答案】(1) 不存在“伴随数列”,见解析 ;(2) 见解析;(3)33【解析】【分析】(1)根据“伴随数列”的定义检验即可判定;(2)根据“伴随数列”的定义,结合数列的单调性讨论的符号即可得解;(3)根据数列和其“伴随数列”项的特征,结合单调性分析出,即可求解.【详解】(1)解:数列1,3,5,7,9不存在“伴随数列” 因为, 所以数列1,3,5,7,9不存在“伴随数列”. (2)证明:因为, 又因为,所以有 所以 所以 成立 (3)1ij m,都有, 因为,.所以,所以 所以因为,所以 又=所以,所以 又,所以 例如:(),满足题意,所以m的最大值是33.【点睛】此题考查数列新定义相关问题,关键在于读懂题意,建立恰当的等量关系或不等关系,求解得值,综合性比较强.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3