1、第十一章 计数原理、概率、随机变量及其分布11.2 概率【高考目标定位】一、随机事件的概率1考纲点击(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别;(2)了解两个互斥事件的概率加法公式。2热点提示(1)多以选择题或填空题的形式直接考查互斥事件的概率及运算,而随机事件的有关概念现时频率很少直接考查;(2)互斥事件、对立事件发生的概率问题有时也会出现在解答题中,多为应用问题。二、古典概型1考纲点击(1)理解古典概型及其概率计算公式;(2)会计算一些随机事件所含的基本事件数及事件发生的概率。2热点提示(1)古典概型的考查主要是等可能事件的概率的求法,通常要结合互
2、斥事件、对立事件求概率;(2)出题形式多样,各种题型均有可能出现。三、几何概型1考纲点击(1)了解随机数的意义,能运用模拟方法估计概率;(2)了解几何概型的意义。2热点提示(1)以几何概型的定义和公式为依据,重在掌握常见的两种几何度量长度、面积;(2)主要考查几何概型的理解和概率的求法,多以选择题和填空题的形式出现。【考纲知识梳理】一、随机事件的概率1事件(1)在条件S下,一定会发生的事件,叫做相对于条件S的必然事件;(2)在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件;(3)在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件。2概率和频率(1)用概率度量随机发生
3、的可能性大小能为我们的决策提供关键性的依据;(2)在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数,称事件A出现的比例为事件A出现的频率;(3)对于给定的随机事件A,由于事件A发生的频繁随着试验次数的增加稳定于概率P(A),因此可以用频率来估计概率P(A)。注:频率和概率的区别是频率随着试验次数的变化而变化,概率却是一个常数,它是频率的科学抽象。当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率。3事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于
4、事件B)相等关系若且,那么称事件A与事件B相等A=B并事件(和事件)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的交事件(或和事件)AB(或A+B)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,那么称事件A与事件B互斥AB=对立事件若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件注:互斥事件和对立事件都是针对两个事件而言的。在一次试验中,两个互斥的事件有可能都不发生,也可能有一个发生;而两个对立的事件则必有一个发生,但不可能同时发生。所以,两个事件
5、互斥,他们未必对立;反之,两个事件对立,它们一定互斥。也就是说,两个事件对立是这两个事件互斥的充分而不必要条件。4概率的几个基本性质(1)概率的取值范围:0P(A)1;(2)必然事件的概率P(E)=1;(3)不可能事件的概率P(F)=0;(4)概率的加法公式如果事件A与事件B互斥,则P(AB)=P(A)+P(B);(5)对立事件的概率若事件A与事件B互为对立事件,则AB为必然事件。P(AB)=1,P(A)=1-P(B)。二、古典概型1基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。2古典概型具有以下两个特点的概率模型称为古典概率模型,简称古
6、典概型。(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等。注:确定一个试验是否为古典概型主要在于这个试验是否具有古典概型的两个特征:有限性和等可能性。3古典概型的概率公式。三、几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。(2)在几何概型中事件A的概率计算公式。注:古典概型与几何概型中基本事件发生的可能性是相等的,但古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个。【热点难点精析】一、随机事件的概率相关链接1事件的判断震怒地三种事件即不可能事件、尽然事件和随机事
7、件的概念充分理解,特别是随机事件要看它是否可能发生,并且是在一定条件下的,它不同于判断命题的真假。2对随机事件的理解应包含下面两个方面:(1)随机事件是指一定条件下出现的某种结果,随着条件的改变其结果也会不同,因此必须强调同一事件必须在相同的条件下研究;(2)随机事件可以重复地进行大量试验,每次试验结果不一定相同,且无法预测下一次的结果,但随着试验的重复进行,其结果呈现规律性。例题解析例一个口袋装有5个白球和3个黑球,从中任意取出一个球:(1)“取出的球是红球”是什么事件?(2)“取出的球是黑球”是什么事件?(3)“取出的球是白球或黑球”是什么事件?思路解析:结合必然事件、不可能事件、随机事件
8、的概念求解。解答:(1)由于口袋内只装有黑、白两种颜色的球,故“取出的球是红球”是不可能事件;(2)由已知,从口袋内取出一个球,可能是白球也可能是黑球,故“取出的球是黑球”是随机事件;(3)由于口袋内装的黑、白两种颜色的球,故取出一个球不是黑球,就是白球鞋。因此,“取出的球是白球或黑球”是必然事件。(二)随机事件的频率与概率相关链接1随机事件的频率,指此事件发生的次数与试验总次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率;2概率可看做频率在理论上的期望值,它从数量上反映了随机事件发生的可能性
9、的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近。只要次数足够多,所是频率就近似地当做随机事件的概率。例题解析例某篮球运动员在最近几场大赛中罚球投篮的结果如下:(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率是多少?思路解析:解答本题可根据频率的计算公式,其中为相同条件下重复的试验次数,为事件A出现的次数,且随着试验次数的增多,频率接近概率。解答:(1)由公式可计算出每场比赛该运动员罚球进球的频率依次为(2)由(1)知,每场比赛进球的频率虽然不同,但频率总是在的附近摆动,可知该运动员投篮一次,进球的概率约为。(三)互斥事件、对立事件的概率例一盒中装有大小和质地均相同
10、的12只小球,其中5个红球,4个黑球,2个白球,1个绿球。从中随机取出1球,求(1)取出的小球是红球或黑球的概率;(2)取出的小球是红球或黑球或白球的概率。思路解析:设事件分析事件的性质根据互斥事件概率求法求解。解答:记事件A=任取1球为红球;B=任取1球为黑球;C=任取1球为白球;D=任取1球为绿球,则(1)取出1球为红球或黑球的概率为(2)取出1球为红球或黑球或白球的概率为注:(1)解决此类问题,首先应结合互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算。(2)求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率
11、的和,运用互斥事件的求和公式计算。二是间接求法,先求此事件的对立事件的概率,再用公式,即运用逆向思维(正难则反),特别是“至多”,“至少”型题目,用间接求法就显得较简便。(3)互斥事件、对立事件的定义是判断两事件是否是互斥事件、对立事件的一种最有效、最简便的基本方法。也可从集合角度来判断,如果A,B是两个互斥事件,反映在集合上是表示A,B两个事件所含结果组成的集合的交集为空集,即AB=;如果A,B是对立事件,则在AB=的前提下,A与B的并集为全集。二、古典概型(一)写出基本事件相关链接1随机试验满足下列条件:(1)试验可以在相同的条件下重复做下去;(2)试验的所有结果是明确可知的,并且不止一个
12、;(3)每次试验总是恰好出现这些结果中的一个,但在试验之产却不能肯定会出现哪一个结果。所以,随机试验的每一个可能出现的结果是一个随机事件,这类随机事件叫做基本事件。2计算古典概型所含基本事件总数的方法(1)树形图(2)列表法(3)另外,还可以用坐标系中的点来表示基本事件,进而可计算基本事件总数(4)用排列组合求基本事件总数。例题解析例做抛掷两颗骰子的试验:用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数,写出(1)试验的基本事件;(2)事件“出现点数之和大于8”;(3)事件“出现点数相等”;(4)事件“出现点数之和大于10”。思路解析:抛掷两颗骰子的试验,每次只
13、有一种结果;且每种结果出现的可能性是相同的,所以该试验是古典概型,当试验结果较少时可用列举法将所有结果一一列出。解答:(1)这个试验的基本事件为(2)“出现点数之和大于8”包含以下10个基本事件:(3)“出现点数相等”包含以下6个基本事件:。(4)“出现点数之和大于10”包含以下3个基本事件:(二)求简单古典概型的概率相关链接求古典概型概率的步骤(1)仔细阅读题目,弄清题目的背景材料,加深理解题意;(2)判断本试验的结晶是否为等可能事件,设出所求事件A;(3)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;(4)利用公式求出事件A的概率。注:并不是所有的试验都是古典概型。例如,在
14、适宜的条件下种下一粒种子观察它是否“发芽”,这个试验的基本事件空间为发芽,不发芽,而“发芽”与 “不发芽”这两种结果出现的机会一般是不均等的。例题解析 例如图,在一个木制的棱长为3的正方体表面涂上颜色,将它的棱3等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入一个口袋中。(1)从这个口袋中任意取出1个正方体,这个小正方体的表面恰好没有颜色的概率是多少?(2)从这个口袋中同时任意取出2个小正方体,其中1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色的概率是多少?思路解析:该模型为古典概型,基本事件个数是有限的,并且每个基本事件的发生
15、的等可能的。解答:在27个小正方体中,恰好3个面都涂有颜色的共8个,恰好2个面涂有颜色的共12个,恰好1个面涂有颜色的共6个,表面没涂颜色的确个。(1)从27个小正方体中任意取出1个,共有种等可能的结果。因为在27个小正方体中,表面没涂颜色的只有1个,所以从这个口袋中任意取出1个小正方体,而这个小正方体的表面恰好没涂颜色的概率是。(2)从27个小正方体中,同时任取2 个,共种等可能的结果。在这些结果中,有1个小正方体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有颜色包含的结果有种。所以从这个口袋中同时任意取出2个小正方体,其中1个小正体恰好有1个面涂有颜色,另1个小正方体至少有2个面涂有
16、颜色的概率是。(三)复杂的古典概型的概率求法例袋中有6个球,其中4个白球,2个红球,从袋中任意取出2个球,求下列事件的概率:(1)A:取出的2个球都是白球;(2)B:取出的2个球中1个是白球,另1个是红球。思路解析:用列举法求出基本事件总数n求出事件A、B包含的基本事件数m根据古典概型公式坟概率。解答:设4个白球的编号为1,2,3,4,2个红球的编号为5,6。从袋中的6个小球中任取2个的方法为共15种。(1)从袋中的6个球中任取2个,所取的2个球全是白球的方法总数,即是从4个白球中任取2个的方法总数,共有6种。即:取出的2个球全是白球的概率为。(2)从袋中的6个球中任取2个,其中1个为红球,而
17、另1个为白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种。取出的2 个球中1个是白球,另1个是红球的概率为。注:(1)在古典概型条件下,当基本事件总数为n时,每一个基本事件发生的概率均为,要求事件A的概率,关键是求出基本事件总数n和事件A中所含基本事件数m,再由古典概型概率公式求出事件A的概率。(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质进一步求解。三、几何概型(一)与长度有关的几何概型相关链接1如果试验的结果构成的区域的几何度量可用长度表示,
18、则其概率的计算公式为P(A)=。2将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解。例题解析例在半径为1的圆内一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接的等边三角形边长的概率是 思路解析:解决概率问题先判断属于什么概率模型,本题属几何概型,把问题转化为化成:直径上到圆心O的距离小于的点构成的线段长与直径长之比。解答:记事件A为“弦长超过圆内接等边三角形的边长”,如图,不妨在过等边三角形BCD的顶点B的直径BE上任取一点F作垂直于直
19、径的弦,当弦为CD时,就是等边三角形的边长,弦长大于CD的充要条件是圆心O到弦的距离小于OF(此时F为OE中点),由几何概型公式得:。答案:(二)与面积(体积)有关的几何概型相关链接1如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:。2“面积比”是求几何概率的一种重要类型,也是在高考中常考的题型。3如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为:。注:解决此类问题一定要注意几何概型的条件。例题解析例如图,射箭比赛的箭靶涂有5个彩色的分环,从外向内依次为白色、黑色、蓝色、红色,靶心为金色,金色靶心叫做“黄心”。奥运会的比赛靶面直径是122cm,靶心
20、直径是12.2cm,运动员在70米外射箭。假设运动员射的箭都能中靶,且射中靶面内任一点是等可能的,那么射中“黄心”的概率是多少?思路解析:求出大圆的面积n求出“黄心”的面积m由几何概型的概率求法得。解答:记“射中黄心”为事件B,由于中靶点随机地落在面积为的大圆内,而当中靶点落在面积为的黄心时,事件B发生,于是事件B发生的概率为,即“射中黄心”的概率是。(三)生活中的几何概型例两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率。思路解析:两人不论谁先到都要等迟
21、到者40分钟,即小时。设两人分别于x时和y时到达约见地点,要使两人在约定的时间范围内相见,当且仅当,因此转化成面积问题,利用几何概型求解。解答:设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,当且仅当。两人到达约见地点所有时刻(x,y)的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x,y)的各种可能结果可用图中的阴影部分(包括边界)不表示。因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为注:对于活生生中的几何概型问题:(1)要注意实际问题中的可能性的判断;(2)将实际问题
22、转化为几何概型中的长度、角度、面积、体积等常见几何概型的求解问题,构造出随机事件A对应的几何图形,利用几何图形的度量来求随机事件的概率,根据实际问题的具体情况,合理设置参数,建立适当的坐标系,在此基础上将试验的每一个结果一一对应于该坐标系的点,便可构造出度量区域。(3)如果试验的结果所构成的区域的几何度量可用角度来表示,则其概率公式为:。解决此类问题事件A的角必须含在事件的全部构成的角之内。【感悟高考真题】1(2010辽宁理数)(3)两个实习生每人加工一个零件加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A) (B) (C) (D)【答案】
23、B【命题立意】本题考查了相互独立事件同时发生的概率,考查了有关概率的计算问题【解析】记两个零件中恰好有一个一等品的事件为A,则P(A)=P(A1)+ P(A2)=2(2010江西理数)11.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查两枚。国王用方法一、二能发现至少一枚劣币的概率分别为和,则A. = B. D。以上三种情况都有可能【答案】B【解析】考查不放回的抽球、重点考查二项分布的概率。本题是北师大版新课标的课堂作业,作为旧大纲的最后一年高考,本题给出一个强烈的导向信号。方法一:
24、每箱的选中的概率为,总概率为;同理,方法二:每箱的选中的概率为,总事件的概率为,作差得a的概率是 (A) (B) (C) (D)答案:D4(2010上海文数)10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。解析:考查等可能事件概率“抽出的2张均为红桃”的概率为5(2010湖南文数)11.在区间-1,2上随即取一个数x,则x0,1的概率为 。【答案】【命题意图】本题考察几何概率,属容易题。6(2010重庆理数)(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为_.解析:由得
25、7(2010安徽理数)15、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是_(写出所有正确结论的编号)。; ; 事件与事件相互独立;是两两互斥的事件; 的值不能确定,因为它与中哪一个发生有关15.【解析】易见是两两互斥的事件,而。【方法总结】本题是概率的综合问题,掌握基本概念,及条件概率的基本运算是解决问题的关键.本题在是两两互斥的事件,把事件B的概率进行转化,可知事件B的概率是确定的.8(2010陕西文
26、数)19 (本小题满分12分)为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:()估计该校男生的人数;()估计该校学生身高在170185cm之间的概率;()从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。解 ()样本中男生人数为40 ,由分层出样比例为10%估计全校男生人数为400。()有统计图知,样本中身高在170185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170185cm之间的频率故有f估计该校学生身高在170180cm之间的概率()样本中
27、身高在180185cm之间的男生有4人,设其编号为 样本中身高在185190cm之间的男生有2人,设其编号为从上述6人中任取2人的树状图为:故从样本中身高在180190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm之间的可能结果数为9,因此,所求概率【考点精题精练】一、选择题1锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为 (C)(A) (B) (C) (D) 2先后抛掷两枚均匀的正方体骰子,记骰子落地后朝上的点数分别为x、y,则的概率为(C)ABCD3节假日时,国
28、人发手机短信问候亲友已成为一种时尚,若小李的40名同事中,给其发短信问候的概率为1,0.8,0.5,0的人数分别是8,15,14,3(人),通常情况下,小李应收到同事问候的信息条数为 ( A )A27 B37C38D4设集合,若、,则的概率是A. B. C. D.5从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为(D) 6已知函数、都是定义在上的函数,且(且),在有穷数列()中,任意取正整数,则其前项和大于的概率是( C )A. B. C. D.7掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”则P(AB)等于 (B)(
29、A)1 (B) (C) (D)8在区间(0,1)上随机取两个数,则关于的一元二次方程有实根的概率为 (A)(A) (B) (C) (D)9投骰子两次,依次将所得的点数输入本题程序框图中的输入框,则两次输出都是0的概率是( C )A B C D10在5道题中有3道理科题和2道文科题,如果不放回的依次抽取2道题,在第一次抽到文科题的条件下,第二次抽到理科题的概率是( D )A. B. C. D. 11在某一试验中事件A出现的概率为p,则在n次试验中出现k次的概率为( D )A(1-p)n-kpk B(1-p)kpn-k C1-(1-p)k D(1-p)kpn-k12口袋里放有大小相等的两个红球和一
30、个白球,有放回地每次摸取一个球,定义数列:,如果为数列的前项和,那么的概率为( C ) A B C D二、填空题13有10件产品分三个等次,其中一等品4件,二等品3件,三等品3件,从10件产品中任取2件,则取出的2件产品同等次的概率为 14为了测算右图阴影部分的面积,做一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,结果恰有200个点落在阴影部分内.据此,可估计阴影部分的面积是_9_15如图所示的电路,有a,b,c三个开关,每个开关开或关的概率都为,且是相互独立的,则灯泡亮的概率是 . (结果用分数表示)16在正内随机取点P,则能使为钝角三角形的概率是 三、解答题17甲乙二人
31、用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。 (1)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况; (2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少? (3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由。解:(1)甲乙二人抽到的牌的所有情况(方片4用4表示,红桃2,红桃3,红桃4分别用2,3,4表示)为:(2,3)、(2,4)、(2,4)、(3,2)、(3,4)、(3,4)、(4,2)、(4,3)、(4,4)、(4
32、, 2)、(4,3)(4,4)共12种不同情况(没有写全面时:只写出1个不给分,24个给1分,58个给2分,911个给3分) (2)甲抽到3,乙抽到的牌只能是2,4,4因此乙抽到的牌的数字大于3的概率为 (3)由甲抽到的牌比乙大的有(3,2)、(4,2)、(4,3)、(4,2)、(4,3)5种,甲胜的概率,乙获胜的概率为此游戏不公平。18袋内装有6个球,每个球上都记有从1到6的一个号码,设号码为n的球重克,这些球等可能地从袋里取出(不受重量、号码的影响)。 (1)如果任意取出1球,求其重量大于号码数的概率; (2)如果不放回地任意取出2球,求它们重量相等的概率。解:(1)由题意,任意取出1球,共有6种等可能的方法。由不等式3分所以,于是所求概率为6分 (2)从6个球中任意取出2个球,共有15种等可能的方法,列举如下:(1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6)8分设第n号与第m号的两个球的重量相等,则有10分故所求概率为12分 w.w.w.k.s.5.u.c.o.m