ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:153.50KB ,
资源ID:572541      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-572541-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2022沪科版九下第24章圆24.2圆的基本性质第4课时圆心角弧弦弦心距间的关系教案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2022沪科版九下第24章圆24.2圆的基本性质第4课时圆心角弧弦弦心距间的关系教案.doc

1、圆心角、弧、弦、弦心距之间的关系知识要点归纳 1. 圆不但是轴对称图形,而且也是中心对称图形,实际上圆绕圆心旋转任意一个角度,都能够与原来的图形重合。 2. 圆心角:顶点在圆心的角叫做圆心角。从圆心到弦的距离叫做弦心距。 3. 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。 4. 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 注意:要正确理解和使用圆心角定理及推论。 (1)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件虽然圆心角相等,但所对的弧、弦、弦心距不一定相等。 距也

2、不相切。 (2)要结合图形深刻理解圆心角、弧、弦、弦心距这四个概念与“所对”一词的含义,从而正确运用上述关系。 下面举四个错例: 这两个结论都是错误,首先CE、FD不是弦,CEA、BFD不是圆心角,就不可以用圆心角定理推论证明。 (3)同一条弦对应两条弧,其中一条是优弧,一条是劣弧,同时在本定理和推论中的“弧”是指同为劣弧或优弧,一般选择劣弧。 (4)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对的圆心角相等”,在“同圆中,相等的弦所对的劣弧相等”等。 5. 1的弧:因为同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,我们把每一份这样的弧叫做1的弧。 一般

3、地,n的圆心角对着n的弧,n的弧对着n的圆心角,也就是说,圆心角的度数和它所对的弧的度数相等。 注意:这里说的相等是指角的度数与弧的度数相等。而不是角与弧相等,在书写时要防止出现“”之类的错误。因为角与弧是两个不能比较变量的概念。相等的弧一定是相同度数的弧,但相同度数的弧却不一定是相等的弧。 6. 圆中弧、圆心角、弦、弦心距的不等关系 (1)在同圆或等圆中,如果弦不等,那么弦心距也就不等,大弦的弦心距较小,小弦的弦心距反而大,反之弦心距较小时,则弦较大。 当弦为圆中的最大弦(直径)时,弦心距缩小为零;当弦逐步缩小时,趋近于零时,弦心距逐步增大,趋近于半径。 (2)在同圆或等圆中,如果弧不等,那

4、么弧所对的弦、圆心角也不等,且大弧所对的圆心角较大,反之也成立。 注意:不能认为大弧所对的弦也较大,只有当弧是劣弧时,这一命题才能成立,半圆对的弦最大,当弧为优弧时,弧越大,对的弦越短。 7. 辅助线方法小结: (1)有弦的中点时,常连弦心距,进而可利用垂径定理或圆心角、弦、弧、弦心距关系定理;另外,证明两弦相等也常作弦心距。 (2)在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角。 (3)有弧的中点或证弧的中点时,常有以下几种引辅助线的方法: (I)连过弧中点的半径;(II)连等弧对的弦;(III)作等弧所对的圆心角。【典型例题】 例1. 已知:如图,在O中,弦AB、CD的

5、延长线交于P点,PO平分APC。 求证:(1)ABCD;(2)PAPC 分析:要证明两弦相等,可利用弧、圆心角、弦心距之中的一种相等来证,由于已知角平分线PO过圆心,利用弦心距相等可以解决。 证明:(1)过O点作OMAB于M,ONCD于N PO平分APC OMON ABCD(在同圆中,相等的弦心距所对的弦相等) 此题还有几种变式图形,道理是一样的。 弦AB、DC的交点在圆上,即B、P、D三点重合。 若PO平分APC,求证:PAPC。 弦AB、CD交于P点(P点在圆内) PO平分APC,求证:ABCD。 此题还可将题设与结论交换一下,即已知ABCD,求证:PO平分APC,证法与上面一样,利用弦心

6、距等。 (2)在RtPOM和RtPON中, 即PAPC 例2. 如图,在O中,AB2CD,那么( ) 分析: 解法一: 故选A。 解法二: 例3. 求证:OEOF 证法一:连结OC、OD 证法二:过O点作OMCD于N交O于M 例4. 如图,O中AB是直径,COAB,D是CD的中点,DEAB。 分析:度数又等于它们所对的圆心角的度数,则关键是求出COE、AOE的度数。 证明:连结OE 例5. 交AB于M、N。 求证:AMMNNB 解析一: 证法一:连结OE、AE,设等边ABC的边长为2a 解析二: 证法二: 如图,连结OE,设AC2a,则ACAB2OE2a 解析三: 要证AMMNNB,即证AM:

7、MO2:1,故联想到三角形的重心性质,若能证明M是ACG的重心,问题得证。(三角形的重心即为三角形三条中线的交点到顶点的距离等于交点到对边中点距离的2倍) 证明三: 连结AE,并延长交CO的延长线于G 设AC2a,则有AEOAa(证法一中已证明AOE为等边三角形) ACBC,AOOB AOCG,CABGAO60,AOAO AOCAOG OCOG,且AGAC2a AEa,AEEGa 即E为AG中点,O为CG中点 M为ACG的重心 【模拟试题】一. 选择题。 1. 在O与O中,若中,则有( ) A. B. C. D. 的大小无法比较 2. 半径为4cm,120的圆心角所对的弦长为( ) A. B.

8、 C. D. 3. 在同圆或等圆中,如果圆心角BOA等于另一个圆心角COD的2倍,则下列式子中能成立的是( ) A. B. C. D. 4. 在O中,圆心角AOB90,点O到弦AB的距离为4,则O的直径的长为( ) A. B. C. 24D. 16 5. 在O中,两弦ABCD,OM、ON分别为这两条弦的弦心距,则OM、ON的关系是( ) A. B. C. D. 无法确定 6. 如图,AB为O的直径,C、D是O上的两点,则DAC的度数是( ) A. 70B. 45C. 35D. 30二. 填空题。 1. 一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为_。 2. 一条弦等于其圆的半径,则弦

9、所对的优弧的度数为_。 3. 在半径为R的圆中,垂直平分半径的弦长等于_。 4. 在O中,弦CD与直径AB相交于E,且AEC30,AE1cm,BE5cm,那么弦CD的弦心距OF_cm,弦CD的长为_cm。 5. 已知O的半径为5cm,过O内一已知点P的最短的弦长为8cm,则OP_。 6. 已知A、B、C为O上三点,若度数之比为1:2:3,则AOB_,BOC_,COA_。 7. 已知O中,直径为10cm,是O的,则弦AB_,AB的弦心距_。三. 解答题。 1. 如图:已知,OA为O的半径,AC是弦,OBOA并交AC延长线于B点,OA6,OB8,求AC的长。 2. 如图,中,O在的三边上所截得的弦

10、长都相等,求BOC的度数。 3. 已知:如图,在O中,弦ABCD,且ABCD于E,BE7,AE3,OGAB于G,求:OG的长? 4. 已知:如图,求OFE的度数。 5. 如图,C是O的直径AB上一点,过点C作弦DE,使CDCO,使的度数为40,求的度数。 6. 如图:已知,O中,OB、OC分别交AC、DB于M、N。 求证:是等腰三角形。 7. 如图,O中弦ABCD,且AB与CD交于E。求证:DEAE。【试题答案】一. 选择题。 1. D2. B3. D4. B5. A6. C二. 填空题。 1. 902. 3003. 4. 5. 3cm6. 60,120,1807. 三. 解答题。 1. 过O点作ODAB于D 根据射影定理: 2. 提示:O是中B、C的角平分线交点。 3. OG2 过O点作OMCD 四边形OGEM是正方形 4. 5. 120。连结OD、OE。 6. 证明: 又OBAC,OCBD OMON 是等腰三角形 7. 证明:连结OE,过O点作OMAB于M,ONCD于N ABCD,OMON 又OEOE, MEEN 即AEDE14

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3