ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:157.50KB ,
资源ID:572526      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-572526-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014届高三数学二轮专题复习课后强化作业 5-1直线与圆 WORD版含详解.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014届高三数学二轮专题复习课后强化作业 5-1直线与圆 WORD版含详解.doc

1、基本素能训练一、选择题1若直线l1:xay60与l2:(a2)x3y2a0平行,则l1与l2间的距离为()A. B.C. D.答案B解析由l1l2知3a(a2)且2a6(a2),2a218,求得a1,l1:xy60,l2:xy0,两条平行直线l1与l2间的距离为d.故选B.2(2013山东潍坊模拟)若PQ是圆x2y29的弦,PQ的中点是(1,2),则直线PQ的方程是()Ax2y30 Bx2y50C2xy40 D2xy0答案B解析结合圆的几何性质易知直线PQ过点A(1,2),且和直线OA垂直,故其方程为y2(x1),整理得x2y50.3(文)C1:(x1)2y24与C2:(x1)2(y3)29相

2、交弦所在直线为l,则l被O:x2y24截得弦长为()A. B4C. D.答案D解析由C1与C2的方程相减得l:2x3y20.圆心O(0,0)到l的距离d,O的半径R2,截得弦长为22.(理)(2013重庆理,7)已知圆C1:(x2)2(y3)21,圆C2:(x3)2(y4)29,M、N分别是圆C1、C2上的动点,P为x轴上的动点,则|PM|PN|的最小值为()A54 B.1C62 D.答案A解析依题意,C1关于x轴的对称圆为C,圆心C为(2,3),半径为1,C2的圆心为(3,4),半径为3,则(|PC|PC2|)min|CC2|5,所以(|PM|PN|)min(|PC|PC2|)min(13)

3、54,选A.4(2013惠州调研)直线axy2a0与圆x2y29的位置关系是()A相离 B相切C相交 D不确定答案C解析直线axy2a0a(x2)y0,即直线恒过点(2,0),点(2,0)在圆内,所以直线与圆相交,故选C.5(2013重庆文,4)设P是圆(x3)2(y1)24上的动点,Q是直线x3上的动点,则|PQ|的最小值为()A6B4C3D2答案B解析如图所示,要使|PQ|最小,则过圆心作直线x3的垂线分别与圆及直线交点为P、Q时,|PQ|最小,此时圆心到直线x3的距离为6,则|PQ|min624.故选B.6(2013广东文,7)垂直于直线yx1且与圆x2y21相切于第一象限的直线方程是(

4、)Axy0 Bxy10Cxy10 Dxy0答案A解析设直线方程为xym0,直线与圆相切,则1,m或m(由直线与圆的切点在第一象限知不合题意,故舍去),所以选A.二、填空题7(2013天津耀华中学月考)已知直线l过点P(3,4)且与点A(2,2),B(4,2)等距离,则直线l的方程为_答案2x3y180或2xy20解析本题主要考查直线方程的求法,属中档题当直线斜率不存在时,则直线方程为x3,则A、B两点到x3的距离分别为d15,d21,不符要求故直线斜率存在,设为k,则直线方程可设为y4k(x3),即kxy3k40,则由题意得,解得k或k2,故直线方程为2x3y180或2xy20.8(文)(20

5、13天津耀华中学月考)在平面直角坐标系xOy中,已知圆x2y24上有且只有四个点到直线12x5yc0的距离为1,则实数c的取值范围是_答案(13,13)解析本题考查了直线与圆的位置关系,利用数形结合可解决此题,属中档题要使圆x2y24上有且只有四个点到直线12x5yc0的距离为1,只需满足圆心到直线的距离小于1即可即1,解|c|13,13c0)的焦点在圆C1上(1)求抛物线C2的方程;(2)过点A(1,0)的直线l与抛物线C2交于B,C两点,又分别过B、C两点作抛物线C2的切线,当两条切线互相垂直时,求直线l的方程解析(1)易求得圆心到直线的距离为,所以半径r1.圆C1:x2y21.抛物线的焦

6、点(0,)在圆x2y21上,得p2,所以x24y.(2)设所求直线的方程为yk(x1),B(x1,y1),C(x2,y2)将直线方程代入抛物线方程可得x24kx4k0,x1x24k.因为抛物线y,所以y,所以两条切线的斜率分别为、,所以1,所以k1.故所求直线方程为xy10.10(2012河南许昌、新乡、平顶山调研)已知点A(2,0),B(2,0),直线PA与直线PB斜率之积为,记点P的轨迹为曲线C.(1)求曲线C的方程;(2)设M、N是曲线C上任意两点,且|,是否存在以原点为圆心且与MN总相切的圆?若存在,求出该圆的方程;若不存在,请说明理由解析(1)设P(x,y),则由直线PA与直线PB斜

7、率之积为得,(x2),整理得曲线C的方程为1(x2)(2)若|,则.设M(x1,y1),N(x2,y2)若直线MN斜率不存在,则y2y1,N(x1,y1)由得1,又1.解得直线MN方程为x.原点O到直线MN的距离d.若直线MN斜率存在,设方程为ykxm.由得(4k23)x28kmx4m2120.x1x2,x1x2.(*)由得1,整理得(k21)x1x2km(x1x2)m20.代入(*)式解得7m212(k21)此时(4k23)x28kmx4m2120中0.此时原点O到直线MN的距离d.故原点O到直线MN的距离恒为d.存在以原点为圆心且与MN总相切的圆,方程为x2y2.能力提高训练一、选择题1直

8、线l与圆x2y22x4ya0(a3)相交于A、B两点,若弦AB的中点为(2,3),则直线l的方程为()Axy50 Bxy10Cxy50 Dxy30答案A解析设圆x2y22x4ya0(a7或a或aC3a或a7Da7或a3答案C解析本题主要考查直线和圆的位置关系、补集思想及分析、理解、解决问题的能力两条平行线与圆都相交时,由得a,两条直线都和圆相离时,由得a7,所以两条直线和圆“相切”时a的取值范围3a或a7,故选C.二、填空题5(2013杭州质检)在ABC中,角A、B、C的对边分别为a、b、c,若sin2Asin2Bsin2C,则直线axbyc0被圆x2y29所截得弦长为_答案2解析由正弦定理得

9、a2b2c2,圆心到直线距离d,弦长l222.6(2013合肥质检)设直线mxy30与圆(x1)2(y2)24相交于A、B两点,且弦长为2,则m_.答案0解析圆的半径为2,弦长为2,弦心距为1,即得d1,解得m0.三、解答题7(2013海口调研)已知圆C:x2y2r2(r0)经过点(1,)(1)求圆C的方程;(2)是否存在经过点(1,1)的直线l,它与圆C相交于A,B两个不同点,且满足关系(O为坐标原点)的点M也在圆C上,如果存在,求出直线l的方程;如果不存在,请说明理由解析(1)由圆C:x2y2r2,再由点(1,)在圆C上,得r212()24,所以圆C的方程为x2y24.(2)假设直线l存在

10、,设A(x1,y1),B(x2,y2),M(x0,y0)若直线l的斜率存在,设直线l的方程为y1k(x1),联立消去y得,(1k2)x22k(k1)xk22k30,由韦达定理得x1x22,x1x21,y1y2k2x1x2k(k1)(x1x2)(k1)23,因为点A(x1,y1),B(x2,y2)在圆C上,因此,得xy4,xy4,由得,x0,y0,由于点M也在圆C上,则()2()24,整理得3x1x2y1y24,即x1x2y1y20,所以1(3)0,从而得,k22k10,即k1,因此,直线l的方程为y1x1,即xy20.若直线l的斜率不存在,则A(1,),B(1,),M(,)()2()244,故

11、点M不在圆上与题设矛盾,综上所知:k1,直线方程为xy20.8(文)(2012西安八交联考)已知圆O:x2y22交x轴于A、B两点,曲线C是以AB为长轴,离心率为的椭圆,其左焦点为F.若P是圆O上一点,连接PF,过原点O作直线PF的垂线交直线x2于点Q.(1)求椭圆C的标准方程;(2)若点P的坐标为(1,1),求证:直线PQ与圆O相切;(3)试探究:当点P在圆O上运动时(不与A,B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由解析(1)因为a,e,所以c1,则b1,即椭圆C的标准方程为y21.(2)因为P(1,1),所以kPF,kOQ2,所以直线OQ的方程为y2

12、x.又Q在直线x2上,所以点Q(2,4)kPQ1,kOP1,kOPkPQ1,即OPPQ,故直线PQ与圆O相切(3)当点P在圆O上运动时,直线PQ与圆P保持相切的位置关系,设P(x0,y0),(x0),则y2x,kPF,kOQ,直线OQ的方程为yx,点Q(2,),kPQ,又kOP.kOPkPQ1,即OPPQ(P不与A、B重合),直线PQ始终与圆O相切(理)设抛物线C:x22py(p0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B、D两点(1)若BFD90,ABD的面积为4,求p的值及圆 F的方程;(2)若A、B、F三点在同一直线m上,直线n与m平行,且n与C只有一

13、个交公共,求坐标原点到m、n距离的比值分析(1)由BFD90及抛物线的对称性可推知BFD为等腰直角三角形,利用等腰直角三角形的性质表示出ABD的面积,建立等式关系求得p的值,然后由圆心和半径写出圆的方程;(2)由“A、B、F三点在同一直线m上,直线n与m平行”这一条件求出直线m、n的斜率,设出直线n的方程,与抛物线方程联立,利用两者只有一个公共点(0),可求得直线n的方程(方程中含有p),然后利用距离公式求出坐标原点到m、n距离的比值解析(1)由已知可得BFD为等腰直角三角形,|BD|2p,圆F的半径|FA|p.由抛物线定义可知A到l的距离d|FA|p.因为ABD的面积为4,所以|BD|d4,

14、即2pp4,解得p2(舍去),p2.所以F(0,1),圆F的方程为x2(y1)28.(2)因为A、B、F三点在同一直线m上,所以AB为圆F的直径,ADB90.由抛物线定义知,|AD|FA|AB|,所以ABD30,直线m的斜率为或.当m的斜率为时,由已知可设直线n:yxb,代入x22py得x2px2pb0.由于n与C只有一个公共点,故p28pb0.解得b.因为m的截距b1,3,所以坐标原点到m、n距离的比值为3.当m的斜率为时,由图形对称性可知,坐标原点到m,n距离的比值为3.点评本题考查抛物线的几何性质,考查直线与抛物线的位置关系在求解直线与抛物线的位置关系问题时,经常借助抛物线的几何性质,设出直线的方程,然后将其与抛物线方程联立,利用根与系数的关系求解

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3