1、二项分布及其应用一、选择题1甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为()A0.6 B0.7C0.8 D0.66解析 甲市为雨天记为事件A,乙市为雨天记为事件B,则P(A)0.2,P(B)0.18,P(AB)0.12,P(B|A)0.6.答案 A2 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A. B. C. D.解析 本题涉及古典概型概率的计算本知识点在考纲中为B级要求由题意得P(A),P(B),则
2、事件A,B至少有一件发生的概率是1P()P()1.答案 C 3在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率p的取值范围是()A0.4,1 B(0,0.4C(0,0.6 D0.6,1解析设事件A发生的概率为p,则Cp(1p)3Cp2(1p)2,解得p0.4,故选A.答案A4一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚国王用方法一、二能发现至少一枚劣币的概率分别记为p1和p2.则()Ap1p2 Bp1p2 D以上三种情况都
3、有可能解析p111011015,p21515则p1300级别1212状况优良轻微污染轻度污染中度污染中度重污染重度污染对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间0,50,(50,100,(100,150,(150,200,(200,250,(250,300进行分组,得到频率分布直方图如下图(1)求直方图中x的值;(2)计算一年中空气质量为良或轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率(结果用分数表示已知5778 125,27128,365735)解析(1)x.(2)50365219.(3)每天空气质量为良或轻微污染的概率为P,则P,设
4、X是一周内空气质量为良或轻微污染的天数则XB,P(X0)C7,P(X1)C6,P17.16学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱)(1)求在1次游戏中,()摸出3个白球的概率;()获奖的概率;(2)求在2次游戏中获奖次数X的分布列及数学期望E(X)解析(1)()设“在1次游戏中摸出i个白球”为事件Ai(i0,1,2,3),则P(A3).()设“在1次游戏中获奖”为事件B,则BA2A3.又P(A2),且A2,A3互斥,所以P(B)P(A2)P(A3).(2)由题意可知X的所有可能取值为0,1,2.由于X服从二项分布,即XB.P(X0)2,P(X1)C,P(X2)2.所以X的分布列是X012PX的数学期望E(X)012.