1、高考资源网() 您身边的高考专家吉林省桦甸市第四中学2013届高考数学一轮复习解析几何部分训练题(三)一、选择题1、(湖南文理)已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=12、(江西文 )椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为A. B. C. D. 3、(全国文理)已知、为双曲线的左、右焦点,点在上,则(A) (B) (C) (D)二、解答题1、(湖南理)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2y2=9外,且
2、对C1上任意一点M,M到直线x=2的距离等于该点与圆C2上点的距离的最小值.()求曲线C1的方程;()设P(x0,y0)(y03)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=4上运动时,四点A,B,C,D的纵坐标之积为定值.2、(湖南文)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.()求椭圆E的方程;()设P是椭圆E上一点,过P作两条斜率之积为的直线1,2.当直线1,2都与圆C相切时,求P的坐标.ABPOxy3、(江苏)如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为,已知和
3、都在椭圆上,其中e为椭圆的离心率(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值4、(江西文)已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足(1)求曲线C的方程;(2)点Q(x0,y0)(-2x02)是曲线C上动点,曲线C在点Q处的切线为,点P的坐标是(0,-1),与PA,PB分别交于点D,E,求QAB与PDE的面积之比。答案:一、选择题1、A 设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点P (2,1)在C 的渐近线上,即.又,C的方程为-=1.2、B 3、C
4、二、解答题1、()解法1 :设M的坐标为,由已知得,易知圆上的点位于直线的右侧.于是,所以.化简得曲线的方程为.解法2 :由题设知,曲线上任意一点M到圆心的距离等于它到直线的距离,因此,曲线是以为焦点,直线为准线的抛物线,故其方程为.()当点P在直线上运动时,P的坐标为,又,则过P且与圆相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为.于是整理得 设过P所作的两条切线的斜率分别为,则是方程的两个实根,故 由得 设四点A,B,C,D的纵坐标分别为,则是方程的两个实根,所以 同理可得 于是由,三式得=6400。所以,当P在直线上运动时,四点A,B,C,D的纵坐标之积为定值6400.2、()由,得.故圆的圆心为点从而可设椭圆的方程为其焦距为,由题设知故椭圆的方程为:()设点的坐标为,的斜分率分别为则的方程分别为且由与圆相切,得,即同理可得.从而是方程的两个实根,于是且由得解得或由得由得它们满足式,故点的坐标为,或,或,或.3、解析:版权所有:高考资源网()版权所有:高考资源网()高考资源网版权所有 侵权必究