ImageVerifierCode 换一换
格式:DOC , 页数:38 ,大小:1.55MB ,
资源ID:570810      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-570810-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(吉林省松原市扶余县第一中学2014年高考数学真题集锦素材:专题八立体几何.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

吉林省松原市扶余县第一中学2014年高考数学真题集锦素材:专题八立体几何.DOC

1、1(2013高考新课标全国卷)某几何体的三视图如图所示,则该几何体的体积为()A168 B88C1616 D816解析:选A.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V422224168.2(2013高考新课标全国卷)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A. cm3 B. cm3C. cm3 D. cm3解析:选A.如图,作出球的一个截面,则MC862(cm),BMAB84(cm)设球的半径为R cm,则R2OM2MB2(R2)24

2、2,R5,V球53 (cm3)3(2013高考新课标全国卷)已知m,n为异面直线,m平面,n平面.直线l满足lm,ln,l,l,则()A且lB且lC与相交,且交线垂直于lD与相交,且交线平行于l解析:选D.根据所给的已知条件作图,如图所示由图可知与相交,且交线平行于l,故选D.4(2013高考大纲全国卷)已知正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于()A. B.C. D.解析:选A.法一:如图,连接AC,交BD于点O,由正四棱柱的性质,有ACBD.因为CC1平面ABCD,所以CC1BD.又CC1ACC,所以BD平面CC1O.在平面CC1O内作CH

3、C1O,垂足为H,则BDCH.又BDC1OO,所以CH平面BDC1,连接DH,则DH为CD在平面BDC1上的射影,所以CDH为CD与平面BDC1所成的角设AA12AB2.在RtCOC1中,由等面积变换易求得CH.在RtCDH中,sinCDH.法二:以D为坐标原点,建立空间直角坐标系,如图,设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2)设平面BDC1的法向量为n(x,y,z),则n,n,所以有令y2,得平面BDC1的一个法向量为n(2,2,1)设CD与平面BDC1所成的角为,则sin |cosn,|.

4、5(2013高考大纲全国卷)已知正四棱柱ABCDA1B1C1D1中,AA12AB,则CD与平面BDC1所成角的正弦值等于()A. B.C. D.解析:选A.法一:如图,连接AC,交BD于点O,由正四棱柱的性质,有ACBD.因为CC1平面ABCD,所以CC1BD.又CC1ACC,所以BD平面CC1O.在平面CC1O内作CHC1O,垂足为H,则BDCH.又BDC1OO,所以CH平面BDC1,连接DH,则DH为CD在平面BDC1上的射影,所以CDH为CD与平面BDC1所成的角设AA12AB2.在RtCOC1中,由等面积变换易求得CH.在RtCDH中,sinCDH.法二:以D为坐标原点,建立空间直角坐

5、标系,如图,设AA12AB2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则(0,1,0),(1,1,0),(0,1,2)设平面BDC1的法向量为n(x,y,z),则n,n,所以有令y2,得平面BDC1的一个法向量为n(2,2,1)设CD与平面BDC1所成的角为,则sin |cosn,|.6(2013高考山东卷)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是()A4,8 B4,C4(1), D8,8解析:选B.由正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,V222.四棱锥的侧面是全等的等腰三角形,底为2

6、,高为,S侧424.7(2013高考山东卷)已知三棱柱ABCA1B1C1的侧棱与底面垂直,体积为,底面是边长为的正三角形若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为 ()A. B.C. D.解析:选B.如图所示,P为正三角形A1B1C1的中心,设O为ABC的中心,由题意知:PO平面ABC,连接OA,则PAO即为PA与平面ABC所成的角在正三角形ABC中,ABBCAC,则S()2,VABCA1B1C1SPO,PO.又AO1, tanPAO,PAO.8(2013高考浙江卷)设m、n是两条不同的直线,是两个不同的平面()A若m,n,则mnB若m,m,则C若mn,m,则nD若m,则m

7、解析:选C.A项,当m,n时,m,n可能平行,可能相交,也可能异面,故错误;B项,当m,m时,可能平行也可能相交,故错误;C项,当mn,m时,n,故正确;D项,当m,时,m可能与平行,可能在内,也可能与相交,故错误故选C.9(2013高考新课标全国卷)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()解析:选A.根据已知条件作出图形:四面体C1A1DB,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示故选A.10(2013高考安徽

8、卷)在下列命题中,不是公理的是()A平行于同一个平面的两个平面相互平行B过不在同一条直线上的三点,有且只有一个平面C如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线解析:选A.A,不是公理,是个常用的结论,需经过推理论证;B,是平面的基本性质公理;C,是平面的基本性质公理;D,是平面的基本性质公理11(2013高考北京卷)如图,在正方体ABCDA1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A3个 B4个C5个 D6个解析:选B.如图,取底面ABCD的中心O,连接PA,

9、PC,PO.AC平面DD1B,又PO平面DD1B,ACPO.又O是BD的中点,PAPC.同理,取B1C与BC1的交点H,易证B1C平面D1C1B,B1CPH.又H是B1C的中点,PB1PC,PAPB1PC.同理可证PA1PC1PD.又P是BD1的三等分点,PBPD1PB1PD,故点P到正方体的顶点的不同距离有4个12(2013高考辽宁卷)已知直三棱柱ABCA1B1C1的6个顶点都在球O的球面上若AB3,AC4,ABAC,AA112,则球O的半径为()A. B2C. D3解析:选C.因为直三棱柱中AB3,AC4,AA112,ABAC,所以BC5,且BC为过底面ABC的截面圆的直径取BC中点D,则

10、OD底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R13,即R.13(2013高考浙江卷)在空间中,过点A作平面的垂线,垂足为B,记Bf(A)设,是两个不同的平面,对空间任意一点P,Q1ff(P),Q2ff(P),恒有PQ1PQ2,则()A平面与平面垂直 B平面与平面所成的(锐)二面角为45C平面与平面平行 D平面与平面所成的(锐)二面角为60解析:选A.设P1f(P),P2f(P),则PP1,P1Q1,PP2,P2Q2.若,则P1与Q2重合、P2与Q1重合,所以PQ1PQ2,所以与相交设l,由PP1P2Q2,所以P,P1,P2,Q2四点共面同理P,P1,P

11、2,Q1四点共面所以P,P1,P2,Q1,Q2五点共面,且与的交线l垂直于此平面又因为PQ1PQ2,所以Q1、Q2重合且在l上,四边形PP1Q1P2为矩形那么P1Q1P2为二面角l的平面角,所以.14(2013高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于()A. B1C. D.解析:选D.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为的矩形,因此该几何体的正视图是一个长为,宽为1的矩形,其面积为.15(2013高考江西卷)一几何体的三视图如图所示,则该几何体的体积为()A2009B20018C1409D14

12、018解析:选A.由三视图可知该几何体的下面是一个长方体,上面是半个圆柱组成的组合体长方体的长、宽、高分别为10、4、5,半圆柱底面圆半径为3,高为2,故组合体体积V104592009.16.(2013高考四川卷)一个几何体的三视图如图所示,则该几何体可以是()A棱柱 B棱台C圆柱 D圆台解析:选D.由俯视图是圆环可排除A,B,由正视图和侧视图都是等腰梯形可排除C,故选D.17(2013高考广东卷)某三棱锥的三视图如图所示,则该三棱锥的体积是()A. B.C. D1解析:选B.如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V

13、112,故选B.18(2013高考广东卷)设l为直线,是两个不同的平面下列命题中正确的是()A若l,l,则B若l,l,则C若l,l,则D若,l,则l解析:选B.选项A,若l,l,则和可能平行也可能相交,故错误;选项B,若l,l,则,故正确;选项C,若l,l,则,故错误;选项D,若,l,则l与的位置关系有三种可能:l,l,l,故错误故选B.19(2013高考湖南卷)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A1 B.C. D.解析:选C.当正方体的俯视图是面积为1的正方形时,其正视图的最小面积为1,最大面积为.因为1,因此所给选项中其正视图的面积不

14、可能为,故选C.20(2013高考江西卷)如图,正方体的底面与正四面体的底面在同一平面上,且ABCD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么mn()A8 B9C10 D11解析:选A.取CD的中点H,连接EH,HF.在四面体CDEF中,CDEH,CDFH,所以CD平面EFH,所以AB平面EFH,所以正方体的左、右两个侧面与EF平行,其余4个平面与EF相交,即n4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m4,所以mn448.21(2013高考重庆卷)某几何体的三视图如图所示,则该几何体的体积为()A. B.

15、C200 D240解析:选C.由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S20.又棱柱的高为10,所以体积VSh2010200.22(2013高考广东卷)某四棱台的三视图如图所示,则该四棱台的体积是()A4 B.C. D6解析:选B.由三视图可还原出四棱台的直观图如图所示,其上底和下底都是正方形,边长分别是1和2,与底面垂直的棱为棱台的高,长度为2,故其体积为V(1222)2,故选B.23(2013高考广东卷)设m,n是两条不同的直线,是两个不同的平面,下列命题中正确的是()A若,m,n,则m n B若,m,n,则mnC若mn,m,n,则D若m,m

16、n,n,则解析:选D.如图,在长方体ABCDA1B1C1D1中,平面BCC1B1平面ABCD,BC1平面BCC1B1,BC平面ABCD,而BC1不垂直于BC,故A错误平面A1B1C1D1平面ABCD,B1D1平面A1B1C1D1,AC平面ABCD,但B1D1和AC不平行,故B错误ABA1D1,AB平面ABCD,A1D1平面A1B1C1D1,但平面A1B1C1D1平面ABCD,故C错误故选D.24(2013高考新课标全国卷)已知H是球O的直径AB上一点,AHHB12,AB平面,H为垂足,截球O所得截面的面积为,则球O的表面积为_解析:如图,设球O的半径为R,则由AHHB12得HA2RR,OH.截

17、面面积为(HM)2,HM1.在RtHMO中,OM2OH2HM2,R2R2HM2R21,R.S球4R24()2.答案:25(2013高考新课标全国卷)已知正四棱锥OABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为_解析:V四棱锥OABCDh,得h,OA2h2()26.S球4OA224.答案:2426(2013高考浙江卷)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于_cm3.解析:由三视图可知该几何体为一个直三棱柱被截去了一个小三棱锥,如图所示三棱柱的底面为直角三角形,且直角边长分别为3和4,三棱柱的高为5,故其体积V134530(cm3),小三棱锥的底面与三

18、棱柱的上底面相同,高为3,故其体积V23436(cm3),所以所求几何体的体积为30624(cm3)答案:2427(2013高考大纲全国卷)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,OK,且圆O与圆K所在的平面所成的一个二面角为60,则球O的表面积等于_解析:如图所示,公共弦为AB,设球的半径为R,则ABR.取AB中点M,连接OM、KM,由圆的性质知OMAB,KMAB,所以KMO为圆O与圆K所在平面所成的一个二面角的平面角,则KMO60.在RtKMO中,OK,所以OM.在RtOAM中,因为OA2OM2AM2,所以R23R2,解得R24,所以球O的表面积为4R216.答案:16

19、28(2013高考江苏卷)如图,在三棱柱A1B1C1ABC中,D,E,F分别是AB,AC,AA1的中点设三棱锥FADE的体积为V1,三棱柱A1B1C1ABC的体积为V2,则V1V2_. 解析:设三棱柱的底面ABC的面积为S,高为h,则其体积为V2Sh.因为D,E分别为AB,AC的中点,所以ADE的面积等于S.又因为F为AA1的中点,所以三棱锥FADE的高等于h,于是三棱锥FADE的体积V1ShShV2,故V1V2124.答案:12429(2013高考北京卷)某四棱锥的三视图如图所示,该四棱锥的体积为_解析:由几何体的三视图可知该几何体是一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是

20、1,故其体积为V913.答案:330(2013高考北京卷)如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为_解析:如图,过点E作EE1平面A1B1C1D1,交直线B1C1于点E1,连接D1E1,DE,在平面D1DEE1内过点P作PHEE1交D1E1于点H,连接C1H,则C1H即为点P到直线CC1的距离当点P在线段D1E上运动时,点P到直线CC1的距离的最小值为点C1到线段D1E1的距离,即为C1D1E1的边D1E1上的高h.C1D12,C1E11,D1E1,h.答案:31(2013高考福建卷)已知某一多面体内接于球构成一个

21、简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_解析:由三视图知组合体为球内接正方体,正方体的棱长为2,若球半径为R,则2R2,R.S球表4R24312.答案:1232(2013高考辽宁卷)某几何体的三视图如图所示,则该几何体的体积是_解析:由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为1616.答案:161633(2013高考天津卷)已知一个正方体的所有顶点在一个球面上,若球的体积为,则正方体的棱长为_解析:设正方体棱

22、长为a,球半径为R,则R3,R,a3,a.答案:34(2013高考陕西卷)某几何体的三视图如图所示, 则其表面积为_解析:由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即43.答案:335某几何体的三视图如图所示,则其体积为_解析:原几何体可视为圆锥的一半,其底面半径为1,高为2,其体积为122.答案:36(2013高考新课标全国卷)如图,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.(1)证明:ABA1C;(2)若ABCB2,A1C,求三棱柱ABCA1B1C1的体积解:(1)证明:取AB的中点O,连接OC,OA1,A1B.因为CACB,所

23、以OCAB.由于ABAA1,BAA160,故AA1B为等边三角形,所以OA1AB.因为OCOA1O,所以AB平面OA1C.又A1C平面OA1C,故ABA1C.(2)由题设知ABC与AA1B都是边长为2的等边三角形,所以OCOA1.又A1C,则A1C2OC2OA,故OA1OC.因为OCABO,所以OA1平面ABC,OA1为三棱柱ABCA1B1C1的高又ABC的面积SABC,故三棱柱ABCA1B1C1的体积VSABCOA13.37(2013高考安徽卷)如图,正方体ABCDA1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正

24、确的是_(写出所有正确命题的编号)当0CQ时,S为四边形;当CQ时,S为等腰梯形;当CQ时,S与C1D1的交点R满足C1R;当CQ1时,S为六边形;当CQ1时,S的面积为.解析:当0CQ时,如图(1)在平面AA1D1D内,作AEPQ,显然E在棱DD1上,连接EQ,则S是四边形APQE.当CQ时,如图(2)显然PQBC1AD1,连接D1Q,则S是等腰梯形当CQ时,如图(3)作BFPQ交CC1的延长线于点F,则C1F.作AEBF,交DD1的延长线于点E,D1E,AEPQ,连接EQ交C1D1于点R,由于RtRC1QRtRD1E,C1QD1EC1RRD112,C1R.当CQ1时,如图(3),边接RM(

25、点M为AE与A1D1交点),显然S为五边形APQRM.当CQ1时,如图(4)同可作AEPQ交DD1的延长线于点E,交A1D1于点M,显然点M为A1D1的中点,所以S为菱形APQM,其面积为MPAQ.答案:38(2013高考新课标全国卷)如图,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点,AA1ACCBAB.(1)证明:BC1平面A1CD;(2)求二面角DA1CE的正弦值解:(1)证明:连接AC1,交A1C于点F,则F为AC1的中点又D是AB的中点,连接DF,则BC1DF.因为DF平面A1CD,BC1平面A1CD,所以BC1平面A1CD.(2)由ACCBAB,得ACBC.以C为坐

26、标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Cxyz.设CA2,则D(1,1,0),E(0,2,1),A1(2,0,2),(1,1,0),(0,2,1),(2,0,2)设n(x1,y1,z1)是平面A1CD的法向量,则即可取n(1,1,1)同理,设m是平面A1CE的法向量,则可取m(2,1,2)从而cosn,m,故sinn,m.即二面角DA1CE的正弦值为.39(2013高考陕西卷)如图,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O为底面中心,A1O平面ABCD,ABAA1.(1)证明:A1C平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角的大小解:(1)

27、法一:由题设易知OA,OB,OA1两两垂直,以O为原点建立如图所示的空间直角坐标系ABAA1,OAOBOA11,A(1,0,0),B(0,1,0),C(1,0,0),D(0,1,0),A1(0,0,1)由,易得B1(1,1,1)(1,0,1),(0,2,0),(1,0,1),0,0,A1CBD,A1CBB1,A1C平面BB1D1D.法二:A1O平面ABCD,A1OBD.又四边形ABCD是正方形,BDAC,BD平面A1OC,BDA1C.又OA1是AC的中垂线,A1AA1C,且AC2,AC2AAA1C2,AA1C是直角三角形,AA1A1C.又BB1AA1,A1CBB1.又BB1BDB,A1C平面B

28、B1D1D.(2)设平面OCB1的法向量n(x,y,z)(1,0,0),(1,1,1),取n(0,1,1),由(1)知,(1,0,1)是平面BB1D1D的法向量,cos |cosn,|.又0,.40(2013高考湖南卷)如图,在直棱柱ABCDA1B1C1D1中,ADBC,BAD90,ACBD,BC1,ADAA13.(1)证明:ACB1D;(2)求直线B1C1与平面ACD1所成角的正弦值解:法一:(1)证明:因为BB1平面ABCD,AC平面ABCD,所以ACBB1.又ACBD,所以AC平面BB1D.而B1D平面BB1D,所以ACB1D.(2)因为B1C1AD,所以直线B1C1与平面ACD1所成的

29、角等于直线AD与平面ACD1所成的角(记为)连接A1D.因为棱柱ABCDA1B1C1D1是直棱柱,且B1A1D1BAD90,所以A1B1平面ADD1A1,从而A1B1AD1.又ADAA13,所以四边形ADD1A1是正方形,于是A1DAD1.故AD1平面A1B1D,于是AD1B1D.由(1)知,ACB1D,所以B1D平面ACD1.故ADB190.在直角梯形ABCD中,因为ACBD,所以BACADB.从而RtABCRtDAB,故,即AB.连接AB1,易知AB1D是直角三角形,且B1D2BBBD2BBAB2AD221,即B1D.在RtAB1D中,cosADB1,即cos(90).从而sin .即直线

30、B1C1与平面ACD1所成角的正弦值为.法二:(1)证明:易知,AB,AD,AA1两两垂直如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系设ABt,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3)从而(t,3,3),(t,1,0),(t,3,0)因为ACBD,所以t2300.解得t或t(舍去)于是(,3,3),(,1,0)因为3300,所以,即ACB1D.(2)由(1)知,(0,3,3),(,1,0),(0,1,0)设n(x,y,z)是平面ACD1的一个法

31、向量,则即令x1,则n(1,)设直线B1C1与平面ACD1所成角为,则sin |cosn,|,即直线B1C1与平面ACD1所成角的正弦值为.41(2013高考大纲全国卷)如图,四棱锥PABCD中,ABCBAD90,BC2AD,PAB和PAD都是边长为2的等边三角形(1)证明:PBCD;(2)求点A到平面PCD的距离解:(1)证明:如图,取BC的中点E,连接DE,则四边形ABED为正方形过点P作PO平面ABCD,垂足为O.连接OA,OB,OD,OE.由PAB和PAD都是等边三角形知PAPBPD,所以OAOBOD,即点O为正方形ABED对角线的交点,故OEBD.又OEOP,BDOO,所以OE平面P

32、DB,从而PBOE.因为O是BD的中点,E是BC的中点,所以OECD.因此PBCD.(2)取PD的中点F,连接OF,则OFPB.由(1)知,PBCD,故OFCD.又ODBD,OP,故POD为等腰三角形,因此OFPD.又PDCDD,所以OF平面PCD.因为AECD,CD平面PCD,AE平面PCD,所以AE平面PCD.因此点O到平面PCD的距离OF就是点A到平面PCD的距离,而OFPB1,所以点A到平面PCD的距离为1.42(2013高考山东卷)如图,四棱锥PABCD中,ABAC,ABPA,ABCD,AB2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点(1)求证:CE平面PAD;

33、(2)求证:平面EFG平面EMN.证明:(1)法一:如图,取PA的中点H,连接EH,DH.因为E为PB的中点,所以EHAB,EHAB.又ABCD,CDAB,所以EHCD,EHCD.所以四边形DCEH是平行四边形所以CEDH.又DH平面PAD,CE平面PAD,所以CE平面PAD.法二:如图,连接CF.因为F为AB的中点,所以AFAB.又CDAB,所以AFCD.又AFCD,所以四边形AFCD为平行四边形所以CFAD.又CF平面PAD,所以CF平面PAD.因为E,F分别为PB,AB的中点,所以EFPA.又EF平面PAD,所以EF平面PAD.因为CFEFF,故平面CEF平面PAD.又CE平面CEF,所

34、以CE平面PAD.(2)因为E,F分别为PB,AB的中点,所以EFPA.又ABPA,所以ABEF.同理可证ABFG.又EFFGF,EF平面EFG,FG平面EFG,因此AB平面EFG.又M,N分别为PD,PC的中点,所以MNDC.又ABDC,所以MNAB,所以MN平面EFG.又MN平面EMN,所以平面EFG平面EMN.43(2013高考江西卷)如图,四棱锥PABCD中,PA平面ABCD,E为BD的中点,G为PD的中点,DABDCB,EAEBAB1,PA,连接CE并延长交AD于F.(1)求证:AD平面CFG;(2)求平面BCP与平面DCP的夹角的余弦值解:(1)证明:在ABD中,因为点E是BD中点

35、,所以EAEBEDAB1,故BAD,ABEAEB.因为DABDCB,所以EABECB,从而有FEDBECAEB,所以FEDFEA,故EFAD,AFFD.又PGGD,所以FGPA.又PA平面ABCD,所以GFAD,故AD平面CFG.(2)以点A为坐标原点建立如图所示的坐标系,则A(0,0,0),B(1,0,0),C,D(0,0),P,故,.设平面BCP的法向量n1(1,y1,z1),则解得即n1.设平面DCP的法向量n2(1,y2,z2),则,解得即n2(1,2)从而平面BCP与平面DCP的夹角的余弦值为cos .44(2013高考江苏卷)如图,在三棱锥SABC中,平面SAB平面SBC,ABBC

36、,ASAB.过A作AFSB,垂足为F,点E,G分别是棱SA,SC的中点求证:(1)平面EFG平面ABC;(2)BCSA.证明:(1)因为ASAB,AFSB,垂足为F,所以F是SB的中点又因为E是SA的中点,所以EFAB.因为EF平面ABC,AB平面ABC,所以EF平面ABC.同理EG平面ABC.又EFEGE,所以平面EFG平面ABC.(2)因为平面SAB平面SBC,且交线为SB,又AF平面SAB,AFSB,所以AF平面SBC.因为BC平面SBC,所以AFBC.又因为ABBC,AFABA,AF平面SAB,AB平面SAB,所以BC平面SAB.因为SA平面SAB,所以BCSA.45(2013高考江苏

37、卷)如图,在直三棱柱A1B1C1ABC中,ABAC,ABAC2,A1A4,点D是BC的中点(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正弦值解:(1)以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以(2,0,4),(1,1,4)因为cos,所以异面直线A1B与C1D所成角的余弦值为.(2)设平面ADC1的法向量为n1(x,y,z),因为(1,1,0),(0,2,4),所以n10,n10,即xy0且y2z0,取z1,得x2,y

38、2,所以,n1(2,2,1)是平面ADC1的一个法向量取平面AA1B的一个法向量为n2(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为.由|cos |,得sin .因此,平面ADC1与平面ABA1所成二面角的正弦值为.46(2013高考湖北卷)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC平面ABC,E,F分别是PA,PC的中点(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为,异面直线PQ与EF所成的角为,二面角ElC的大小为,求证:

39、sin sin sin .解:(1)直线l平面PAC.证明如下:连接EF,因为E,F分别是PA,PC的中点,所以EFAC.又EF平面ABC,且AC平面ABC,所以EF平面ABC.而EF平面BEF,且平面BEF平面ABCl,所以EFl.因为l平面PAC,EF平面PAC,所以直线l平面PAC.(2)法一(综合法):如图(1),连接BD,由(1)可知交线l即为直线BD,且lAC 因为AB是O的直径,所以ACBC,于是lBC.已知PC平面ABC,而l平面ABC,所以PCl.而PCBCC,所以l平面PBC.连接BE,BF,因为BF平面PBC,所以lBF.故CBF就是二面角ElC的平面角,即CBF.由,作

40、DQCP,且DQCP.连接PQ,DF,因为F是CP的中点,CP2PF,所以DQPF,从而四边形DQPF是平行四边形,PQFD.连接CD,因为PC平面ABC,所以CD是FD在平面ABC内的射影故CDF就是直线PQ与平面ABC所成的角,即CDF.又BD平面PBC,所以BDBF,所以BDF为锐角故BDF为异面直线PQ与EF所成的角,即BDF,于是在RtDCF,RtFBD,RtBCF中,分别可得sin ,sin ,sin ,从而sin sin sin ,即sin sin sin .法二(向量法):如图(2),由,作DQCP,且DQCP.连接PQ,EF,BE,BF,BD.由(1)可知交线l即为直线BD.

41、以点C为原点,向量,所在直线分别为x,y,z轴,建立如图(2)所示的空间直角坐标系,设CAa,CBb,CP2c,则有C(0,0,0),A(a,0,0),B(0,b,0),P(0,0,2c),Q(a,b,c),E,F(0,0,c)于是,(a,b,c),(0,b,c),所以cos ,从而sin .取平面ABC的一个法向量为m(0,0,1),可得sin .设平面BEF的一个法向量为n(x,y,z)由可得取n(0,c,b) 于是|cos |,从而sin .故sin sin sin ,即sin sin sin .47(2013高考浙江卷)如图,在四棱锥PABCD中,PA平面ABCD,ABBC2, ADC

42、D,PA,ABC120,G为线段PC上的点(1)证明:BD平面APC ; (2)若G为PC的中点,求DG与平面APC所成的角的正切值;(3)若G满足PC平面BGD,求 的值解:(1)证明:设点O为AC,BD的交点由ABBC,ADCD,得BD是线段AC的中垂线,所以O为AC的中点,BDAC.又因为PA平面ABCD,BD平面ABCD,所以PABD.所以BD平面APC.(2)连接OG.由(1)可知,OD平面APC,则DG在平面APC内的射影为OG,所以OGD是DG与平面APC所成的角由题意得OGPA.在ABC中,AC 2,所以OCAC.在直角OCD中,OD2.在直角OGD中,tanOGD.所以DG与

43、平面APC所成的角的正切值为.(3)因为PC平面BGD,OG平面BGD,所以PCOG.在直角PAC中,PC,所以GC.从而PG,所以.48(2013高考北京卷)如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别是CD和PC的中点求证:(1)PA底面ABCD;(2)BE平面PAD; (3)平面BEF平面PCD. 证明:(1)因为平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,所以PA底面ABCD.(2)因为ABCD,CD2AB,E为CD的中点,所以ABDE,且ABDE.所以四边形ABED为平行四边形所以BEAD.又因为BE平面PAD

44、,AD平面PAD,所以BE平面PAD.(3)因为ABAD,而且四边形ABED为平行四边形,所以BECD,ADCD.由(1)知PA底面ABCD,所以PACD.所以CD平面PAD.所以CDPD.因为E和F分别是CD和PC的中点,所以PDEF.所以CDEF.又因为CDBE,EFBEE,所以CD平面BEF.所以平面BEF平面PCD.49(2013高考天津卷)如图, 三棱柱ABCA1B1C1中, 侧棱A1A底面ABC,且各棱长均相等,D,E,F分别为棱AB,BC,A1C1的中点. (1)证明EF平面A1CD; (2)证明平面A1CD平面A1ABB1; (3)求直线BC与平面A1CD所成角的正弦值. 解:

45、(1)证明:如图,在三棱柱ABCA1B1C1中,ACA1C1,且ACA1C1,连接ED,在ABC中,因为D,E分别为AB,BC的中点,所以DEAC且DEAC.又因为F为A1C1的中点,可得A1FDE,且A1FDE,即四边形A1DEF为平行四边形,所以EFDA1.又EF平面A1CD,DA1平面A1CD,所以EF平面A1CD.(2)证明:由于底面ABC是正三角形,D为AB的中点,故CDAB.又由于侧棱A1A底面ABC,CD平面ABC,所以A1ACD.又A1AABA,因此CD平面A1ABB1.而CD平面A1CD,所以平面A1CD平面A1ABB1.(3)在平面A1ABB1内,过点B作BGA1D交直线A

46、1D于点G,连接CG.由于平面A1CD平面A1ABB1,而直线A1D是平面A1CD与平面A1ABB1的交线,故BG平面A1CD.由此可得BCG为直线BC与平面A1CD所成的角设棱长为a,可得A1D,由A1ADBGD,易得BG.在RtBGC中,sinBCG.所以直线BC与平面A1CD所成角的正弦值为.50(2013高考四川卷)如图,在三棱柱ABCA1B1C1中,侧棱AA1底面ABC,ABAC2AA1,BAC120,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l平面ADD1A1;(2)设(1)中的直线l

47、交AB于点M,交AC于点N,求二面角AA1MN的余弦值解:(1)如图(1),在平面ABC内,过点P作直线lBC,因为l在平面A1BC外,BC在平面A1BC内,由直线与平面平行的判定定理可知,l平面A1BC.因为ABAC,D是BC的中点,所以BCAD,则直线lAD.因为AA1平面ABC,所以AA1l.又因为AD,AA1在平面ADD1A1内,且AD与AA1相交,所以直线l平面ADD1A1.(2)法一:连接A1P,过点A作AEA1P于点E,过点E作EFA1M于点F,连接AF.由(1)知,MN平面AEA1,所以平面AEA1平面A1MN.所以AE平面A1MN,则A1MAE.所以A1M平面AEF,则A1M

48、AF.故AFE为二面角AA1MN的平面角(设为)设AA11,则由ABAC2AA1,BAC120,有BAD60,AB2,AD1.又P为AD的中点,所以M为AB的中点,且AP,AM1.所以在RtAA1P中,A1P.在RtA1AM中,A1M.从而AE,AF,所以sin .所以cos .故二面角AA1MN的余弦值为.法二:设A1A1,则ABAC2.如图(2),过点A1作A1E平行于C1B1,以点A1为坐标原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系Oxyz(点O与点A1重合),则A1(0,0,0),A(0,0,1)因为P为AD的中点,所以M,N分别为AB,AC的中点,故M,N,所以

49、,(0,0,1),(,0,0)设平面AA1M的一个法向量为n1(x1,y1,z1),则,即故有从而取x11,则y1,所以n1(1,0)设平面A1MN的一个法向量为n2(x2,y2,z2),则即故有从而取y22,则z21,所以n2(0,2,1)设二面角AA1MN的平面角为,又为锐角,则cos .故二面角AA1MN的余弦值为.51(2013高考福建卷)如图,在四棱锥PABCD中,PD平面ABCD,ABDC,ABAD,BC5,DC3,AD4,PAD60.(1) 当正视方向与向量的方向相同时,画出四棱锥PABCD的正视图(要求标出尺寸,并写出演算过程);(2)若M为PA的中点,求证:DM平面PBC;(

50、3)求三棱锥DPBC的体积图(1)解:法一:(1)在梯形ABCD中,如图(1),过点C作CEAB,垂足为E.由已知得,四边形ADCE为矩形,AECD3,在RtBEC中,由BC5,CE4,依勾股定理得BE3,从而AB6.又由PD平面ABCD,得PDAD,从而在RtPDA中,由AD4,PAD60,得PD4.正视图如图(2)所示图(2)图(3)来源:学.科.网(2)如图(3),取PB的中点N,连接MN,CN.在PAB中,M是PA的中点,MNAB,MNAB3.又CDAB,CD3,MNCD,MNCD,四边形MNCD为平行四边形,DMCN.又DM平面PBC,CN平面PBC,DM平面PBC.(3)VDPBC

51、VPDBCSDBCPD,又SDBC6,PD4,所以VDPBC8.法二:(1)同法一图(4)(2)如图(4),取AB的中点E,连接ME,DE.在梯形ABCD中,BECD,且BECD,四边形BCDE为平行四边形,DEBC.又DE平面PBC,BC平面PBC,DE平面PBC.又在PAB中,MEPB,ME平面PBC,PB平面PBC,ME平面PBC.又DEMEE,平面DME平面PBC.又DM平面DME,DM平面PBC.(3)同法一52(2013高考辽宁卷)如图,AB是圆O的直径,PA垂直圆O所在平面,C是圆O上的点(1)求证:BC平面PAC;(2)设Q为PA的中点,G为AOC的重心,求证:QG平面PBC.

52、证明:(1)由AB是圆O的直径,得ACBC,由PA平面ABC,BC平面ABC,得PABC.又PAACA,PA平面PAC,AC平面PAC,所以BC平面PAC.(2)连接OG并延长交AC于点M,连接QM,QO,由G为AOC的重心,得M为AC中点由Q为PA中点,得QMPC,又O为AB中点,得OMBC.因为QMMOM,QM平面QMO,MO平面QMO,BCPCC,BC平面PBC,PC平面PBC,所以平面QMO平面PBC.因为QG平面QMO,所以QG平面PBC.53(2013高考陕西卷)如图, 四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O是底面中心,A1O底面ABCD,ABAA1. (1)证明

53、:底面A1BD/平面CD1B1; (2)求三棱柱ABDA1B1D1的体积. 解:(1)证明:由题设知,BB1綊DD1,四边形BB1D1D是平行四边形,BDB1D1.又BD平面CD1B1,BD平面CD1B1.A1D1綊B1C1綊BC,四边形A1BCD1是平行四边形,A1BD1C.又A1B平面CD1B1,A1B平面CD1B1.又BDA1BB,平面A1BD平面CD1B1.(2)A1O平面ABCD,A1O是三棱柱ABDA1B1D1的高又AOAC1,AA1,A1O1.又SABD1,V三棱柱ABDA1B1D1SABDA1O1.54(2013高考湖南卷)如图,在直棱柱ABCA1B1C1中,BAC90,ABA

54、C,AA13,D是BC的中点,点E在棱BB1上运动(1)证明:ADC1E;(2)当异面直线AC,C1E 所成的角为60时,求三棱锥C1A1B1E的体积解:(1)证明:因为ABAC,D是BC的中点,所以ADBC.又在直三棱柱ABCA1B1C1中,BB1平面ABC,而AD平面ABC,所以ADBB1.由,得AD平面BB1C1C.由点E在棱BB1上运动,得C1E平面BB1C1C,所以ADC1E.(2)因为ACA1C1,所以A1C1E是异面直线AC,C1E所成的角由题意知A1C1E60.因为B1A1C1BAC90,所以A1C1A1B1.又AA1A1C1,从而A1C1平面A1ABB1.于是A1C1A1E.

55、故C1E2.又B1C12,所以B1E2.从而V三棱锥C1A1B1ESA1B1EA1C12.55(2013高考重庆卷)如图,四棱锥PABCD中,PA底面ABCD,BCCD2,AC4,ACBACD,F为PC的中点,AFPB.(1)求PA的长;(2)求二面角BAFD的正弦值解:(1)如图,连接BD交AC于点O,因为BCCD,即BCD为等腰三角形又AC平分BCD,故ACBD.以O为坐标原点,的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz,则OCCDcos 1.而AC4,所以AOACOC3.又ODCDsin ,故A(0,3,0),B(,0,0),C(0,1,0),D(,0,0)因为PA

56、底面ABCD,可设P(0,3,z),由点F为PC边中点,F.又,(,3,z),因为AFPB,故0,即60,z2(z2舍去),所以|2,所以PA的长为2.(2)由(1)知,(,3,0),(,3,0),(0,2,)设平面FAD的法向量为n1(x1,y1,z1),平面FAB的法向量为n2(x2,y2,z2),由n10,n10,得因此可取n1(3,2)由n20,n20,得因此可取n2(3,2)从而法向量n1,n2的夹角的余弦值为cos n1,n2.故二面角BAFD的正弦值为.56(2013高考广东卷)如图,在等腰直角三角形ABC中,A 90,BC6,D,E分别是AC,AB上的点,CDBE,O为BC的中

57、点将ADE沿DE折起,得到如图所示的四棱椎ABCDE,其中AO.(1)证明:AO平面BCDE;(2)求二面角ACDB的平面角的余弦值解:(1)证明:法一:在折叠前的图形中,在等腰直角三角形ABC中,因为BC6,O为BC的中点,所以ACAB3,OCOB3.又因为CDBE,所以ADAE2.如图,连接OD,在OCD中,由余弦定理可得OD.在折叠后的图形中,因为AD2,所以AO2OD2AD2,所以AOOD.同理可证AOOE.又ODOEO,所以AO平面BCDE.法二:如图,在折叠前的图形中,连接AO,交DE于点F,则F为DE的中点在等腰RtABC中,因为BC6,O为BC的中点,所以ACAB3,OA3.因

58、为CDBE,所以D和E分别是AC,AB的三等分点,则AF2,OF1.如图,在折叠后的图形中,连接OF和AF.因为AO,所以AF2OF2AO2,所以AOOF.在折叠前的图形中,DEOF,所以在折叠后的图形中,DEAF,DEOF.又OFAFF,OF,AF平面OAF,所以DE平面OAF.因为OA平面OAF,所以DEOA.因为OFDEF,OF,DE平面BCDE,所以AO平面BCDE.(2)法一:如图,过O作OM垂直于CD的延长线于点M,连接AM.因为AO平面BCDE,CM平面BCDE,OM平面BCDE,所以AOCM,AOOM.因为AOOMO,所以CM平面AOM.因为AM平面AOM,所以CMAM,故AM

59、O就是所求二面角的平面角在RtOMC中,OC3,OCM45,所以OM.在RtAOM中,因为AO,OM,所以AM ,所以cosAMO,所以二面角ACDB的平面角的余弦值为.法二:以点O为原点,建立空间直角坐标系Oxyz,如图所示(F为DE的中点),则A(0,0,),C(0,3,0),D(1,2,0),所以(0,0,),(0,3,),(1,2,)设n(x,y,z)为平面ACD的一个法向量,则令z,得n(1,1,),|n|.由(1)知,(0,0,)为平面CDB的一个法向量又|,n010(1)3,所以cosn,即二面角ACDB的平面角的余弦值为.57(2013高考江西卷)如图,直四棱柱ABCD A1B

60、1C1D1中,ABCD,ADAB,AB2,AD,AA13,E为CD上一点,DE1,EC3.(1)证明:BE平面BB1C1C;(2)求点B1 到平面EA1C1 的距离解:(1)证明:过点B作CD的垂线交CD于点F,则BFAD,EFABDE1,FC2.在RtBFE中,BE.在RtCFB中,BC.在BEC中,因为BE2BC29EC2,故BEBC.由BB1平面ABCD,得BEBB1, 所以BE平面BB1C1C.(2)连接B1E,则三棱锥EA1B1C1的体积VAA1SA1B1C1.在RtA1D1C1中,A1C13.同理,EC13,A1E2,故SA1C1E3.设点B1到平面EA1C1的距离为d,则三棱锥B

61、1EA1C1的体积VdSEA1C1d,从而d,d.58(2013高考湖北卷)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2d1,同样可得在B,C处正下方的矿层厚度分别为B1B2d2,C1C2d3,且d1d2d3,过AB,AC的中点M,N且与直线AA2平行的平面截多面体A1B1C1A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中(1)证明:中截面DEFG是梯形;(2)在ABC中,记BCa,BC边上的高为h,面积为S. 在估测三角形ABC区域内正下方的矿藏储量(即多面体

62、A1B1C1A2B2C2的体积V)时,可用近似公式V估S中h来估算. 已知V(d1d2d3)S,试判断V估与V的大小关系,并加以证明解:(1)证明:依题意A1A2平面ABC,B1B2平面ABC,C1C2平面ABC,所以A1A2B1B2C1C2.又A1A2d1,B1B2d2,C1C2d3,且d1d2d3,所以四边形A1A2B2B1、A1A2C2C1均是梯形由AA2平面MEFN,AA2平面AA2B2B,且平面AA2B2B平面MEFNME,可得AA2ME,即A1A2DE.同理可证A1A2FG,所以DEFG.又点M、N分别为AB、AC的中点,则点D、E、F、G分别为A1B1、A2B2、A2C2、A1C

63、1的中点,即DE、FG分别为梯形A1A2B2B1、A1A2C2C1的中位线,因此DE(A1A2B1B2)(d1d2),FG(A1A2C1C2)(d1d3),而d1d2d3,故DEFG,所以中截面DEFG是梯形(2)V估V.证明如下:由A1A2平面ABC,MN平面ABC,可得A1A2MN.而EMA1A2,所以EMMN,同理可得FNMN.由MN是ABC的中位线,可得MNBCa,即为梯形DEFG的高,因此S中S梯形DEFG(2d1d2d3),即V估S中h(2d1d2d3)又Sah,所以V(d1d2d3)S(d1d2d3)于是VV估(d1d2d3)(2d1d2d3)(d2d1)(d3d1)由d1d20

64、,d3d10,故V估V.59(2013高考四川卷)如图,在三棱柱ABCA1B1C1中,侧棱AA1底面ABC,ABAC2AA12,BAC120,D,D1分别是线段BC,B1C1的中点,点P是线段AD上异于端点的点(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,请说明理由,并证明直线l平面ADD1A1;(2)设(1)中的直线l交AC于点Q,求三棱锥A1QC1D的体积(锥体体积公式:VSh,其中S为底面面积,h为高)解:(1)如图,在平面ABC内,过点P作直线lBC.因为l在平面A1BC外,BC在平面A1BC内,由直线与平面平行的判定定理可知,l平面A1BC.由已知ABAC,点D是BC

65、的中点,所以BCAD,则直线lAD.因为AA1平面ABC,所以AA1直线l.又因为AD,AA1在平面ADD1A1内,且AD与AA1相交,所以直线l平面ADD1A1.(2)过点D作DEAC于E.因为AA1平面ABC,所以AA1DE.又因为AC,AA1在平面AA1C1C内,且AC与AA1相交,所以DE平面AA1C1C.由ABAC2,BAC120,有AD1,DAC60.在ADE中,DEAD,又SA1QC1A1C1AA11,所以VA1QC1DVDA1QC1DESA1QC11.因此三棱锥A1QC1D的体积是.60(2013高考重庆卷)如图,四棱锥PABCD中,PA底面ABCD,PA2,BCCD2,ACB

66、ACD .(1)求证:BD平面PAC;(2)若侧棱PC上的点F满足PF7FC,求三棱锥PBDF的体积解:(1)证明:因为BCCD,所以BCD为等腰三角形又ACBACD,所以BDAC.因为PA底面ABCD,所以PABD,从而BD与平面PAC内两条相交直线PA,AC都垂直,所以BD平面PAC.(2)三棱锥PBCD的底面BCD的面积SBCDBCCDsinBCD22sin.由PA底面ABCD,得VPBCDSBCDPA22.由PF7FC,得三棱锥FBCD的高为PA,故VFBCDSBCDPA2,所以VPBDFVPBCDVFBCD2.61(2013高考广东卷)如图(1),在边长为1的等边三角形ABC中,D,

67、E分别是AB,AC上的点,ADAE,F是BC的中点,AF与DE交于点G.将ABF沿AF折起,得到如图(2)所示的三棱锥ABCF,其中BC.(1)证明:DE平面BCF;(2)证明:CF平面ABF;(3)当AD时,求三棱锥FDEG的体积VFDEG.解:(1)证明:法一:在折叠后的图形中,因为ABAC,ADAE,所以,所以DEBC.因为DE平面BCF,BC平面BCF,所以DE平面BCF.法二:在折叠前的图形中,因为ABAC,ADAE,所以,所以DEBC,即DGBF,EGCF.在折叠后的图形中,仍有DGBF,EGCF.又因为DG平面BCF,BF平面BCF,所以DG平面BCF,同理可证EG平面BCF.又

68、DGEGG,DG平面DEG,EG平面DEG,故平面DEG平面BCF.又DE平面DEG,所以DE平面BCF.(2)证明:在折叠前的图形中,因为ABC为等边三角形,BFCF,所以AFBC,则在折叠后的图形中,AFBF,AFCF.又BFCF,BC,所以BC2BF2CF2,所以BFCF.又BFAFF,BF平面ABF,AF平面ABF,所以CF平面ABF.(3)由(1)知,平面DEG平面BCF,由(2)知AFBF,AFCF,又BFCFF,所以AF平面BCF.所以AF平面DEG,即GF平面DEG.在折叠前的图形中,AB1,BFCF,AF.由AD知,又DGBF,所以,所以DGEG,AG,所以FGAFAG.故三

69、棱锥FDEG的体积为V三棱锥FDEGSDEGFG2.62.(2013高考安徽卷)如图,四棱锥PABCD 的底面ABCD是边长为2的菱形,BAD60,已知PBPD2,PA.(1)证明:PCBD;(2)若E为PA的中点,求三菱锥PBCE的体积解:(1)证明:连接AC,交BD于点O,连接PO.因为底面ABCD是菱形,所以ACBD,BODO.由PBPD知,POBD.又因为POACO,所以BD平面APC,因此BDPC.(2)因为E是PA的中点,所以V三棱锥PBCEV三棱锥CPEBV三棱锥CPABV三棱锥BAPC.由PBPDABAD2知,ABDPBD.因为BAD60,所以POAO,AC2,BO1.又PA,所以PO2AO2PA2,所以POAC,故SAPCPOAC3.由(1)知,BO平面APC,因此V三棱锥PBCEV三棱锥BAPCBOSAPC.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3