ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:128KB ,
资源ID:57000      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-57000-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(云南省师范大学五华区实验中学高中数学必修一导学案:1.1.1.2.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

云南省师范大学五华区实验中学高中数学必修一导学案:1.1.1.2.doc

1、高考资源网() 您身边的高考专家本节学习目标:1掌握集合的表示方法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题2发展运用数学语言的能力,感受集合语言的意义和作用,学习从数学的角度认识世界3通过合作学习培养合作精神学习重点:集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合学习难点:难点是集合特征性质的概念,以及运用特征性质描述法表示集合学习过程(一)自主学习阅读课本,完成下列问题 1.集合的表示方法(1)列举法: 把 一一列举出来,写在 内,用逗号隔开。(2)描述法:把集合中的元素的公共属性描述出来,写在大括号内,具体方法在大括号内先写上表示这个集合

2、元素的 .及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的 。 x I | p(x) 其中:1)x 是集合中元素的代表形式,2)I是x 的范围,3)p(x)是集合中元素 的共同特征,4)竖线不可省略。思考?1、 x | x=3与 y | y=3是否是同一集合? 2、y | y=x2与(x,y)| y=x2 是否是同一集合?(二) 合作探讨1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合; (2)方程x=x的所有实数根组成的集合;(3)由120以内的所有素数组成的集合; (4)方程x-2=0的所有实数根组成的集合; (5)由大于10小于20的所有整数组成的集合

3、。2、试用描述法表示下列集合:1) 方程x-2=0的所有实数根组成的集合; 2) 所有的奇数;所有偶数;比3的倍数多一的整数3) 不等式x-100的解集 4)一次函数y=2x+1图象上的所有的点。 思考?请你结合具体例子,试比较用自然语言、列举法、描述法表示集合时,各自的特点和适用对象。 自己举几个集合的例子,并分别用自然语言,列举法和描述法表示出来。(三)巩固练习 1、已知A=xx=3k-1,kZ,用“”或“”符号填空:(1 ) 5 A, (2 ) 7 A , (3 ) -10 A.2、试选择适当的方法表示下列集合:1) 由小于8的所有素数组成的集合 2) 一次函数y=x+3与y=-2x+6的图象的交点组成的集合;3) 不等式4x-53的解集 4) 二次函数y= x-4的函数值组成的集合;5)反比例函数y=的自变量的值组成的集合;3、已知-3m-1,3m, m+1,求m的值.(四)个人收获与问题知识:方法:我的问题:(五)拓展能力: 设集合B=xNN 1) 试判断元素1,元素2与集合B的关系; 2) 用列举法表示集合B。 - 4 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3