ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:82.50KB ,
资源ID:568808      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-568808-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2019-2020学年北师大版高中数学选修1-2课时跟踪检测(二)条件概率与独立事件 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2019-2020学年北师大版高中数学选修1-2课时跟踪检测(二)条件概率与独立事件 WORD版含解析.doc

1、高考资源网() 您身边的高考专家课时跟踪检测(二)条件概率与独立事件1抛掷一颗骰子一次,A表示事件:“出现偶数点”,B表示事件:“出现3点或6点”,则事件A与B的关系是()A相互互斥事件B相互独立事件C既相互互斥又相互独立事件D既不互斥又不独立事件解析:选BA2,4,6,B3,6,AB6,所以P(A),P(B),P(AB),所以A与B是相互独立事件2把一枚硬币抛掷两次,事件A“第一次出现正面”,事件B“第二次出现反面”,则P(B|A)的值为()A.BC. D1解析:选AP(B)P(A),P(AB),P(B|A).3某农业科技站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的

2、幼苗成活率为0.9,在这批水稻种子中,随机地取出一粒,则这粒水稻种子发芽能成长为幼苗的概率为()A0.02B0.08C0.18 D0.72解析:选D设“这粒水稻种子发芽”为事件A,“这粒水稻种子发芽又成长为幼苗”为事件AB,“这粒种子能成长为幼苗”为事件B|A,则P(A)0.8,P(B|A)0.9,由条件概率公式,得P(AB)P(B|A)P(A)0.90.80.72.4甲射手击中靶心的概率为,乙射手击中靶心的概率为,甲、乙两人各射击一次,那么等于()A甲、乙都击中靶心的概率B甲、乙恰好有一人击中靶心的概率C甲、乙至少有一人击中靶心的概率D甲、乙不全击中靶心的概率解析:选D设“甲、乙都击中靶心”

3、为事件A,则P(A),甲、乙不全击中靶心的概率为P()1P(A)1.5有一个数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则两人都未解决的概率为_,问题得到解决的概率为_解析:甲、乙两人都未能解决为,问题得到解决就是至少有1 人能解决问题P1.答案:6盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为_解析:法一:设A第一次取到新球,B第二次取到新球,则n(A)6954,n(AB)6530,P(B|A).法二:在第一次取到新球的条件下,盒中装有9只乒乓球,其中5只新球,则第二次

4、也取到新球的概率为P.答案:7红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立求红队至少两名队员获胜的概率解:设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则,分别表示甲不胜A、乙不胜B、丙不胜C的事件因为P(D)0.6,P(E)0.5,P(F)0.5,由对立事件的概率公式知,P()0.4,P()0.5,P()0.5.红队至少两人获胜的事件有DE,DF,EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为PP(DE)P(DF)P

5、(EF)P(DEF)0.60.50.50.60.50.50.40.50.50.60.50.50.55.8设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率解:设“只购买甲种商品”为事件A,“只购买乙种商品”为事件B,“购买甲、乙两种商品中的一种”为事件C,“至少购买甲、乙两种商品中的一种”为事件D.(1)因为C(A)(B),所以P(C)P(A)P(B)P(A)P()P()P(

6、B)0.5(10.6)(10.5)0.60.5.(2)因为 ,所以P()P( )P()P()0.50.40.2.所以P(D)1P()10.20.8.92018年某中学对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次若某志愿者考核为合格,授予1个学分;考核为优秀,授予2个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为,他们考核所得的等次相互独立(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;(2)求在这次考核中甲、乙、丙三名志愿者所得学分之和至多为4分的概率解:(1)记“甲考核为优秀”为事件A,“乙考核为优秀”为事件B,“丙考核为优秀”为事件C,“甲、乙、丙至少有一名考核为优秀”为事件D.则P(D)1P( )1P()P()P()1.(2)由题意,得在这次考核中甲、乙、丙三名志愿者所得学分之和为3分的概率为P()P()P()P(),在这次考核中甲、乙、丙三名志愿者所得学分之和为4分的概率为P(A)P(B)P(C).所以在这次考核中甲、乙、丙三名志愿者所得学分之和至多为4分的概率为.高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3