1、7.5 探究弹性势能的表达式 学案(人教版必修2)1_的物体的各部分之间,由于_,也具有势能,这种势能叫做弹性势能研究弹性势能要从分析_入手,对弹簧来说,规定_,它的弹性势能为零,当弹簧_,就具有了弹性势能2(1)弹簧的弹性势能与弹簧被拉伸的长度l有关,并且,拉伸的长度l越大,弹性势能_,但不一定是_关系;(2)即使拉伸的长度l相同,劲度系数k不同的弹簧的弹性势能也不一样,并且拉伸的长度l相同时,k越大,弹性势能_3根据功是_可知,弹性势能的变化量与拉力对弹簧做功的关系为_4设弹簧的劲度系数为k,当弹簧被拉伸l时,把这一拉伸过程分为很多小段,它们的长度分别是l1、l2、l3各个小段上拉力可以近
2、似认为是不变的,分别为F1、F2、F3,所做的功分别为_5vt图线下的面积代表_,Fl图线下的面积代表_;当所分成的小段非常短时,Fl图线与l轴所围成的区域形状是_,该区域的面积为_,所以弹性势能的表达式是_6关于弹性势能,下列说法中正确的是()A发生弹性形变的物体都具有弹性势能B只要弹簧发生形变,就一定具有弹性势能C弹性势能可以与其他形式的能相互转化D弹性势能在国际单位制中的单位是焦耳7关于弹簧的弹性势能,下列说法正确的是()A弹簧的弹性势能跟拉伸(或压缩)的长度有关B弹簧的弹性势能跟弹簧的劲度系数有关C同一弹簧,在弹性限度内,形变量越大,弹性势能越大D弹性势能的大小跟使弹簧发生形变的物体有
3、关【概念规律练】知识点一弹性势能1关于弹性势能,下列说法中正确的是()A任何发生弹性形变的物体,都具有弹性势能B任何具有弹性势能的物体,一定发生了弹性形变C物体只要发生形变,就一定具有弹性势能D弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关2关于弹性势能和重力势能下列说法正确的是()A重力势能属于物体和地球这个系统,弹性势能属于发生弹性形变的物体B重力势能是相对的,弹性势能是绝对的C重力势能和弹性势能都是相对的D重力势能和弹性势能都是状态量3关于弹簧的弹性势能,下列说法中正确的是()A当弹簧变长时,它的弹性势能一定增大B当弹簧变短时,它的弹性势能一定变小C在拉伸长度相同时,k越大的弹簧,它的弹性
4、势能越大D弹簧在被拉伸时的弹性势能一定大于被压缩时的弹性势能知识点二弹力做功与弹性势能的关系4关于弹力做功与弹性势能的关系,我们在进行猜想时,可以参考对重力做功与重力势能的关系的讨论,则下面的猜想有道理的是()A弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能将增加B弹力做功将引起弹性势能的变化,当弹力做正功时,弹性势能将减少C弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能将增加D弹力做功将引起弹性势能的变化,当弹力做负功时,弹性势能将减少5.图1如图1所示,一个物体以速度v0冲向与竖直墙壁相连的轻质弹簧,墙壁和物体间的弹簧被物体压缩,在此过程中以下说法正确的是()A物体对弹簧做
5、的功与弹簧的压缩量成正比B压缩弹簧的过程中,物体向墙壁移动相同的距离,弹力做的功不相等C弹簧的弹力做正功,弹性势能减少D弹簧的弹力做负功,弹性势能增加【方法技巧练】一、探究弹性势能表达式的方法6在猜想弹性势能可能与哪几个物理量有关的时候,有人猜想弹性势能与弹簧的劲度系数k及弹簧的伸长量l有关,但究竟是与l的一次方,还是l的二次方,还是l的三次方有关呢?请完成下面练习以帮助思考(1)若弹性势能Epkl,由于劲度系数k的单位是N/m,弹簧伸长量l的单位是m,则kl的单位是_(2)若弹性势能Epkl2,由于劲度系数k的单位是N/m,弹簧伸长量l的单位是m,则kl2的单位是_(3)若弹性势能Epkl3
6、,由于劲度系数k的单位是N/m,弹簧伸长量l的单位是m,则kl3的单位是_从(1)、(2)、(3)对单位的计算,你可以得到的启示是_二、弹性势能的求解方法图27一根弹簧的弹力位移图线如图2所示,那么弹簧由伸长量8 cm到伸长量4 cm的过程中,弹力做功和弹性势能的变化量为()A3.6 J,3.6 JB3.6 J,3.6 JC1.8 J,1.8 JD1.8 J,1.8 J图38在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0 kg的木块相连,系统处于平衡状态若在木块上再加一个竖直向下的力F,使木块缓慢向下移动0.10 m,力F做功2.5 J,此时木块再次处于平衡状态,力F的大小为50 N
7、,如图3所示求:在木块下移0.10 m的过程中弹性势能的增加量参考答案课前预习练1发生弹性形变有弹力的相互作用弹力做功弹簧长度为原长时被拉长或被压缩后2(1)越大正比(2)越大3能量变化的量度大小相等4F1l1、F2l2、F3l35位移功三角形kl2Epkl26ACD发生弹性形变的物体的各部分之间,由于有弹力的相互作用,都具有弹性势能,A正确弹性势能跟重力势能一样,可以与其他形式的能相互转化,C正确所有能的单位跟功的单位相同,在国际单位制中的单位是焦耳,D正确7ABC由弹性势能的表达式Epkl2可知,弹性势能Ep与弹簧拉伸(或压缩)的长度有关,A选项正确Ep的大小还与k有关,B选项正确在弹性限
8、度内,Ep的大小还与l有关,l越大,Ep越大,C正确弹簧的弹性势能是由弹簧的劲度系数k和形变量l决定的,与使弹簧发生形变的物体无关课堂探究练1AB由弹性势能的定义和相关因素进行判断发生弹性形变的物体的各部分之间,由于弹力作用而具有的势能,叫做弹性势能所以,任何发生弹性形变的物体都具有弹性势能,任何具有弹性势能的物体一定发生了弹性形变物体发生了形变,若是非弹性形变,无弹力作用,物体就不具有弹性势能弹簧的弹性势能除了跟弹簧被拉伸或压缩的长度有关外,还跟弹簧劲度系数的大小有关正确选项为A、B.2ACD重力势能具有系统性,弹性势能只属于发生弹性形变的物体,故A正确;重力势能和弹性势能都是相对的,且都是
9、状态量,故B错,C、D正确3C弹簧弹性势能的大小,除了跟劲度系数k有关外,还跟它的形变量(拉伸或压缩的长度)有关如果弹簧原来处在压缩状态,当它变长时,它的弹性势能应该先减小,在原长处它的弹性势能最小,所以A、B、D均不对4BC5BD由功的计算公式WFlcos 知,恒力做功时,做功的多少与物体的位移成正比,而弹簧对物体的弹力是一个变力,所以A不正确;弹簧开始被压缩时弹力小,弹力做的功也少,弹簧的压缩量变大时,物体移动相同的距离做的功增多,故B正确;物体压缩弹簧的过程,弹簧的弹力与弹力作用点的位移方向相反,所以弹力做负功,弹性势能增加,故C错误,D正确6(1)N(2)J(3)Jm弹性势能Ep与弹簧伸长量l的二次方有关7C弹力做的功W0.04 J1.8 J0,故弹性势能减少1.8 J,即EpEp2Ep11.8 J,故选项C正确84.5 J解析木块缓慢下移0.10 m的过程中,F与重力的合力始终与弹簧弹力等大反向,所以力F和重力做的总功等于克服弹簧弹力做的功,即W弹(WFmgh)(2.52.0100.10) J4.5 J由弹力做功与弹性势能变化的关系知,EpW弹4.5 J.方法总结功是能量转化的量度,因此确定某一过程中的力做的功,是研究该过程能量转化的重要方法