1、赤峰红旗中学平 煤 高 中元宝山区二中元宝山区一中2011届高三第一次统一考试 数学(文)试题注意事项:1答第卷前,考生务必将自己的姓名、准考证号、试卷科目用铅笔涂写在答题卡上。2每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号潦黑,如果要改动用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效。3考试结束,监考人员将本试卷和答题卡一并收回。参考公式:如果事件A、B互斥,那么 正棱锥、圆锥的侧面积公式P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么P(AB)=P(A)P(B) 其中c表示底面周长,l表示斜高或母线长如果事件A在一次试验中发生的概率是 球的体积公式P,那么n次
2、独立重复试验中恰好发生k 次的概率 其中R表示球的半径一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,有且只有一项符合题目要求。1已知全集,集合,则图示中阴影部分表示的集合为( )ABC0,2D2不等式的解集为( )ABCD3已知且=( )ABCD4已知函数的值为( )ABCD5已知实数x,y满足,如目标函数的最小值为1,则实数m等于( )A3B4C5D76等差数列=( )ABC1D27过点P(0,2)且与抛物线相切的直线方程为( )ABCD08如图,已知中边形ABCD与四边形CDEF为互相垂直且边长为2的两个正方形,G为AB中点,则异面直线GF与DB所成角的余弦
3、值为( )A0BCD9从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A300B216C180D16210若向量的夹角取值范围是( )ABCD11已知正方体ABCDA1B1C1D1中,点M、N分别是在AB1、BC1(端点除外),且AM=BN,下列四个结论:AA1MN;A1C1/MN1;MN/平面ABCD;MN、AC为异面直线,其中正确的结论个数为( )A1个B2个C3个D4个12已知抛物线的相同的焦点F,点A是两曲线的一个交点,且AFx轴,若l为双曲线的一条渐近线,则l的倾斜角所在的区间可能是( )ABCD二、填空题:本大题共4小题,每小题5分
4、,共20分,把答案填在题中横线上。13A是第二象限角,为其终边上一点,且x,则的值为 。14若的展开式中的二项式系数之和为256,则展开式中的系数 。15过点(4,4)与抛物线焦点的直线交抛物线于A、B两点,则|AB|= 。16若球O的球面上共有三点A、B、C,其中任意两点间的球面距离都等于大圆周长的经过A、B、C这三点的小圆周长为,则球O的体积为 。三、解答题(本大题共6小题,解答应写出文字说明、证明过程或演算步骤,请把解答过程写在答题卡相应位置上。)17(本小题满分10分) 在中, (I)求 (II)求边AC的长。18(本小题满分12分)已知等比数列,等差数列且()求数列的通项公式;()求
5、数列的前n项和Sn。19(本小题满分12分) 直三棱柱ABCA1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,E是CC1上的点,且CE=2a。 (I)求证:B1E平面ADE; (II)求二面角DAEC的大小。20(本小题满分12分) 2010年上海世博会园区共有A、B、C、D、E五个展区,5月1日开幕后,观众如潮,截止5月2日已有500多万人参观了世博会园区,统计结果表明:其中90%的人参观了A区,50%的人参观了B区,60%的人参观了C区,据此规律,现有甲、乙、丙、丁4人去世博会园区参观,且假设4人参观是相互独立的,试求: (I)这4人中恰有两人参观了A展区的概率; (II)这4人中恰有两人参观了A、B、C展区中的两个概率(精确到0.001)(参考数据:462=2116,482=2304,533=2704,542=2916)21(本小题满分12分) 已知函数 (I)当时,求函数的单调递增区间; (II)如果函数的图象过点(1,1)并且极小值点在区间(1,2)内,求实数b的取值范围。22(本小题满分12分)设双曲线与直线相交于不同两点A、B。 (1)求曲线C的离心率的取值范围; (2)设直线与轴交点为P,且,求的值。