ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:1.35MB ,
资源ID:562665      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-562665-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(内蒙古赤峰市2018-2019学年高二数学下学期期末联考试题 文(含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

内蒙古赤峰市2018-2019学年高二数学下学期期末联考试题 文(含解析).doc

1、内蒙古赤峰市2018-2019学年高二数学下学期期末联考试题 文(含解析) 本试卷共22题,共150分,共8页,考试用时120分钟,考试结束后,将本试卷和答题卡一并交回,考试范围:必修3,选修1-1,1-2,选修4-4,4-5.注意事项:1.答题前,考生先将自己的姓名,准考证号码填写清楚,将条形码准确粘贴条形码区域内.2.选择题答案必须使用2B铅笔填涂,非选择题答案使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面

2、清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足,则( )A. B. C. D. 【答案】A【解析】【分析】利用复数的除法求出z,再求.【详解】由题得,所以.故选:A【点睛】本题主要考查复数的除法运算和共轭复数,意在考查学生对这些知识的理解掌握水平,属于基础题.2.对于函数,下列说法错误的是( )A. 函数的极值不能在区间端点处取得B. 若为的导函数,则是在某一区间存在极值的充分条件C. 极小值不一定小于极大值D. 设函数在区间内有极值,那么在区间内不单调.【答案

3、】B【解析】【分析】利用导数知识对每一个选项逐一分析判断得解.【详解】A. 函数的极值不能在区间端点处取得,故该选项是正确的;B. 若为的导函数,则是在某一区间存在极值的非充分条件,如函数,但是函数是R上的增函数,所以x=0并不是函数的极值点.故该选项是错误的;C. 极小值不一定小于极大值,故该选项是正确的;D. 设函数在区间内有极值,那么在区间内不单调.故该选项是正确的.故选:B【点睛】本题主要考查极值的概念和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,

4、2,2000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷,则抽到的人中,做问卷的人数为( )A. 23B. 24C. 25D. 26【答案】C【解析】【分析】先求出做A,B卷的人数总和,再求做C卷的人数.【详解】由题得每一个小组的人数为,由于,所以做A,B卷调查的总人数为75,所以做C卷调查人数为100-75=25.故选:C【点睛】本题主要考查系统抽样,意在考查学生对该知识的理解掌握水平,属于基础题.4.已知双曲线的离心率为2,则( )A. 3B. C. D. 1【答案】A【解析】【分析】根据题意列方

5、程,即可得解.【详解】由题得,解之得.故选:A【点睛】本题主要考查双曲线离心率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.5.向边长为4的正三角形区域投飞镖,则飞镖落在离三个顶点距离都不小于2的区域内的概率为( )A. B. C. D. 【答案】A【解析】【分析】求出满足条件的正三角形的面积,再求出满足条件正三角形内的点到正三角形的顶点、的距离均不小于2的图形的面积,然后代入几何概型公式即可得到答案【详解】满足条件的正三角形如下图所示:其中正三角形的面积,满足到正三角形的顶点、的距离至少有一个小于2的平面区域如图中阴影部分所示,则,则使取到的点到三个顶点、的距离都不小于2的概率是:

6、,故选:【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.6.若某群体中的成员只用现金支付的概率为0.4,既用现金支付也用非现金支付的概率为0.3,则不用现金支付的概率为( )A. 0.4B. 0.3C. 0.7D. 0.6【答案】B【解析】【分析】利用对立事件的概率公式求解.【详解】由题得不用现金支付的概率P=1-0.4-0.3=0.3.故选:B【点睛】本题主要考查对立事件的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.7. 设集合A=

7、xR|x20,B=xR|x0,C=xR|x(x2)0,则“xAB”是“xC”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 即不充分也不必要条件【答案】C【解析】试题分析:,所以应是充分必要条件.故选C.考点:充分条件、必要条件.【此处有视频,请去附件查看】8.某单位安排甲乙丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班乙说:我在8日和9日都有值班丙说:我们三人各自值班日期之和相等据此可判断丙必定值班的日期是( )A. 10日和12日B. 2日和7日C. 4日和5日D. 6日和11日【答案】D【解析】【分析】确定三人各自值班的日期之和为26,由

8、题可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,确定丙必定值班的日期【详解】由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:【点睛】本题考查分析法,考查学生分析解决问题的能力,属于基础题9.已知,其中为自然对数的底数,则( )A. B. C. D. 【答案】D【解析】当时,单调递增,当时, 单调递减,所以故有选D.10.已知椭圆的右焦点为,离心率

9、,过点的直线交椭圆于两点,若中点为,则直线的斜率为( )A. 2B. C. D. 【答案】C【解析】【分析】先根据已知得到,再利用点差法求出直线的斜率.【详解】由题得.设,由题得,所以,两式相减得,所以,所以,所以.故选:C【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.11.设抛物线的焦点为,准线为,为抛物线上一点,为垂足,如果直线的斜率为,那么( )A. B. C. D. 2【答案】B【解析】【分析】先求出焦点坐标和准线方程,得到方程,与准线方程联立,解出点坐标,因为垂直准线,所以点与点纵坐标相同,再求点横坐标,利用

10、抛物线定义求出长【详解】抛物线方程为,焦点,准线方程为,直线的斜率为,直线的方程为,由可得点坐标为,为垂足,点纵坐标为,代入抛物线方程,得点坐标为,.故选:B【点睛】本题主要考查抛物线的定义和简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些知识的理解掌握水平,属于基础题.12.已知是双曲线的右焦点,点在的右支上,坐标原点为,若,且,则的离心率为( )A. B. C. 2D. 【答案】D【解析】【分析】设双曲线的左焦点为运用余弦定理可得,再由双曲线的定义可得,即为,运用离心率公式计算即可得到所求值【详解】设双曲线的左焦点为由题意可得,即有,即有,由双曲线的定义可得,即为,即有,可得故

11、选:D【点睛】本题考查双曲线的离心率的求法,注意运用余弦定理和双曲线的定义,考查运算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分,请将答案填在答题卡对应题号的位置上.13.已知与之间的一组数据:24681357则与的线性回归方程为必过点_【答案】;【解析】【分析】求出样本中心点即得解.【详解】由题得.所以样本中心点为.所以线性回归方程必过点(5,4).故答案为:【点睛】本题主要考查平均数的计算,考查回归直线的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.14.从2名男同学和3名女同学中任选2人参加社区活动,则选中的2人都是女同学的概率_【答案】;【解析】【分析】利用

12、古典概型的概率公式求解.【详解】由古典概型的概率公式得.故答案为:【点睛】本题主要考查古典概型的概率的计算,意在考查学生对该知识的理解掌握水平,属于基础题.15.在中,若,斜边上的高位,则有结论,运用此类比的方法,若三棱锥的三条侧棱两两相互垂直且长度分别为且三棱锥的直角顶点到底面的高为,则有结论_【答案】;【解析】【分析】由平面上的直角三角形中的边与高的关系式,类比立体中两两垂直的棱的三棱锥中边与高的关系即可【详解】如图,设、为三棱锥的三条两两互相垂直的侧棱,三棱锥的高为,连接交于,、两两互相垂直,平面,平面,故答案为:【点睛】本题主要考查了类比推理的思想和方法,考查运算求解能力,解答此类问题

13、的关键是根据所给的定理类比出立体中两两垂直的棱的三棱锥中边与高的关系16.若函数在上不是单调函数,则实数的取值范围是_【答案】;【解析】【分析】先利用导数求出函数的单调性,再由函数的单调性得到,解不等式组即得解.【详解】由题得,令,所以2x4,令,所以1x2或x4.所以函数的增区间为减区间为(1,2),(4,+).因为函数在上不是单调函数,所以,解之得t所以实数t的取值范围为.故答案为:【点睛】本题主要考查利用导数研究函数的单调性,意在考查学生对该知识的理解掌握水平,属于基础题.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第1721题为必考题,每个试题考生都必须作答.第22

14、、23为选考题,考生根据要求作答. 17.已知且,命题:函数在区间上为增函数;命题:曲线与轴无交点,若“”为真,“” 为假,求实数的取值范围.【答案】或【解析】【分析】先化简两个命题,再根据“”为真,“” 为假得到一真一假,再得到关于a的不等式组,解不等式组即得解.【详解】解:由已知得,对于,即.若“”为真,“”为假,所以一真一假若为真命题,为假命题,则,所以若为假命题,为真命题,则,所以综上,或【点睛】本题主要考查复合命题的真假,考查对数函数的单调性和二次函数的图像和性质,意在考查学生对这些知识的理解掌握水平,属于基础题.18.某同学再一次研究性学习中发现,以下三个式子的值都等于一个常数.(

15、1)试从上述三个式子中选出一个计算出这个常数.(2)猜想出反映一般规律的等式,并对等式的正确性作出证明.【答案】(1)(2),证明见解析【解析】【分析】(1)选择化简得这个常数为;(2)找到一般规律:,再化简证明.【详解】解:(1)(2)一般规律:证明:【点睛】本题主要考查归纳推理,考查三角恒等式证明,意在考查学生对这些知识的理解掌握水平,属于基础题.19.某媒体为调查喜爱娱乐节目是否与观众性别有关,随机抽取了30名男性和30名女性观众,抽查结果用等高条形图表示如图:(1)根据该等高条形图,完成下列列联表,并用独立性检验的方法分析,能否在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目与观众

16、性别有关?(2)从性观众中按喜欢节目与否,用分层抽样的方法抽取5名做进一步调查从这5名中任选2名,求恰有1名喜欢节目和1名不喜欢节目的概率附:0.1000.0500.0100.0012.7063.8416.63510.828【答案】(1)列联表见解析,能在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目与观众性别有关;(2)【解析】试题分析:(1)根据等高条形图算出所需数据可得完成列联表,由列联表,利用公式可得的观测值,与邻界值比较从而可得结果;(2)利用列举法,确定基本事件的个数,即利用古典概型概率公式可求出恰有1名喜欢节目和1名不喜欢节目的概率.试题解析:(1)由题意得列联表如表:喜欢节

17、目不喜欢节目总计男性观众24630女性观众151530总计392160假设:喜欢娱乐节目与观众性别无关,则的观测值,所以能在犯错误的概率不超过0.05的前提下认为喜欢娱乐节目与观众性别有关(2)利用分层抽样在男性观众30名中抽取5名,其中喜欢娱乐节目的人数为,不喜欢节目的人数为被抽取的喜欢娱乐节目的4名分别记为,;不喜欢节目的1名记为则从5名中任选2人的所有可能的结果为:,共有10种,其中恰有1名喜欢节目和1名不喜欢节目的有,共4种,所以所抽取的观众中恰有1名喜欢节目和1名不喜欢节目的观众的概率是20.已知椭圆方程为,射线与椭圆的交点为,过作倾斜角互补的两条直线,分别与椭圆交于两点(异于).(

18、1)求证直线的斜率为定值;(2)求面积最大值.【答案】(1)见解析(2)【解析】【分析】(1)先求出,设直线,联立直线MA的方程与椭圆的方程,借助韦达定理证明直线的斜率为定值;(2)设直线,设,求出,再利用基本不等式求面积的最大值.【详解】解:(1)由,得不妨设直线,直线.由,得,设,同理得直线的斜率为定值2(2)设直线,设由,得,由得,且,点到的距离,当且仅当,即,当时,取等号,所以面积的最大值为1.【点睛】本题主要考查直线和椭圆的位置关系,考查椭圆中的定值问题和最值问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.21.已知函数.(1)求函数的单调区间及极值;(

19、2)求证:对于区间上的任意,都有;(3)若过点可作曲线的三条切线,求实数的取值范围.【答案】(1)当和时, 为增函数;当时,为减函数,的极小值为,极大值为(2)见解析(3)【解析】【分析】(1)利用导数求函数的单调区间和极值;(2)等价于,利用第一问结论分析即得解;(3)设切点为,则,即方程有三个实根,利用导数分析得解.【详解】解:(1)的定义域为,当和时,为增函数;当时,为减函数,极小值为,极大值为(2)当时,为减函数,对于区间上的任取,都有,即得证(3)设切点为,则,设,则,令,解得,要使过点可作曲线三条切线,必须满足,即,解得实数的取值范围为.【点睛】本题主要考查利用导数求函数的单调区间

20、、极值和最值,考查导数的几何意义和利用导数研究函数的零点问题,意在考查学生对这些知识的理解掌握水平分析推理能力,属于中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线.()求与交点的直角坐标系;()若与相交于点,与相交于点,求的最大值.【答案】(1)交点坐标为,(2)最大值为【解析】试题分析:(1)根据 将曲线与的极坐标方程化为直角坐标方程,再联立方程组求解交点的直角坐标,(2)曲线为直线,倾斜角为,极坐标方程为,代入与

21、的极坐标方程可得的极坐标,则为对应极径之差的绝对值,即,最后根据三角函数关系有界性求最值.试题解析:解:():,:,联立得交点坐标为, ()曲线的极坐标方程为,其中因此得到的极坐标为, 的极坐标为所以, 当时,取得最大值,最大值为23.已知函数.(1)当时,求不等式的解集;(2)若的图象与轴围成的三角形面积大于6,求的取值范围.【答案】()()(2,+)【解析】试题分析:()由题意零点分段即可确定不等式的解集为;()由题意可得面积函数为为,求解不等式可得实数a的取值范围为 试题解析:(I)当时,化为, 当时,不等式化为,无解; 当时,不等式化为,解得; 当时,不等式化为,解得。 所以的解集为。 (II)由题设可得, 所以函数的图像与x轴围成的三角形的三个顶点分别为,的面积为。 由题设得,故。 所以a的取值范围为

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3