ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:349.50KB ,
资源ID:559249      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-559249-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2012高一数学学案:第2章第35课时 函数模型(3)(苏教必修1).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2012高一数学学案:第2章第35课时 函数模型(3)(苏教必修1).doc

1、第三十五课时函数模型及其应用(3)【学习导航】 知识网络 函数建摸实际问题解决判断函数类型据单调性求最值学习要求 1根据条件题意写出满足题意的函数;2 能够根据一次函数、二次函数的单调性来求出所写函数的最大值和最小值.自学评价1一次函数求最值主要是利用它的 ;2. 二次函数求最值也是要利用它的单调性,一般我们都先 .3.无论什么函数求最值都要注意 .例如 等.【精典范例】例1:在经济学中,函数的边际函数定义为=.某公司每月最多生产台报警系统装置,生产台()的收入函数(单位:元),其成本函数为(单位:元),利润是收入 与成本之差.(1)求利润函数及边际利润函数;(2)利润函数与边际利润函数是否具

2、有相同的最大值?例2:某租赁公司拥有汽车辆当每辆车的月租金为元时,可全部租出当每辆车的月租金每增加元时,未出租的车将会增加一辆租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费元(1)当每辆车的月租金定为时,能租出多少辆车?(2)当每辆车的月租金定为多少元时?租赁公司的月收益最大?最大月收益是多少?点评:月收益每辆车的租金租出车辆数车辆维护费最值问题一定要考察取最值的条件,因此,求定义域是必不可少的环节例3:南京的某报刊零售点,从报社买进某报纸的价格是每份元,卖出的价格是每份元,卖不掉的报纸可以以每份元的价格退回报社在一个月(以天计算)里,有天每天可卖出份,其余每天只能卖出份,但每天从

3、报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获利润最大?并计算他一个月最多可赚得多少元?分析:此问题是关于利润和份数的关系, 根据经验我们知道:利润每份报纸赚的钱份数卖不掉的报纸份数每份报纸亏的钱,的取值范围是.追踪训练一1.冬季来临,某商场进了一批单价为元的电暖保,如果按元一个销售,能卖个;若销售单价每上涨元,销售量就减少个,要获得最大利润时,电暖保的销售单价应该为多少?2某商品在近天内每件的销售价格(元)与时间(天)的函数关系是,该商品的日销售量(件)与时间(天)的函数关系是,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天【选修延伸】一、函数

4、与图表 高考热点1 (2001上海,12)根据报道,我国目前已成为世界上受荒漠化危害最严重的国家之一图26中(1)表示我国土地沙化总面积在上个世纪五六十年代、七八十年代、九十年代的变化情况由图中的相关信息,可将上述有关年代中,我国年平均土地沙化面积在图1中(2)中图示为:【解】如图2所示.解:由图中的沙化面积可以利用平均面积因为题中是分了五六十年代、六七十年代、九十年代三段所以可分别求出三段的平均面积 ,2.如图,河流航线长,工厂位于码头正北处,原来工厂所需原料需由码头装船沿水路到码头后,再改陆运到工厂,由于水运太长,运费颇高,工厂与航运局协商在段上建一码头,并由码头到工厂修一条新公路,原料改

5、为按由到再到的路线运输,设,每吨的货物总运费为元,已知每吨货物每千米运费水路为元,陆路为元.(1)试写出元关于的函数关系式;(2)要使运费最省,码头应建在何处?听课随笔分析:.总运费元水路运费陆路运费.水路运费元,陆路长度可以勾股定理求得:陆路运费(元).建立此问题的函数模型: .对于问题(2)我们可以利用求函数值域的方法求得运费最省时,点的位置.以上建立实际问题的函数模型均是在弄清题意的基础上,根据几何、物理等相关的知识建立的函数模型思维点拔:一次函数求最值主要是利用它的单调性;函数在上的最值:当时,时有最小值,时有最大值;当时, 时有最大值,时有最小值二次函数求最值也是利用它的单调性,一般

6、都先配方.而求最值都要考虑取最值的条件.追踪训练二1某电脑公司在甲乙两地各有一个分公司,甲分公司现有电脑台,乙分公司现有同一型号 的电脑台.现地某单位向该公司购买该型号的电脑台,地某单位向该公司购买该型号的电脑台.已知甲地运往、两地每台电脑的运费分别是元和元,乙地运往、两地每台电脑的运费分别是元和元.(1)设甲地调运台至地,该公司运往和两地的总运费为元,求关于的函数关系式.(2)若总运费不超过元,问能有几种调运方案?(3)求总运费最低的调运方案及最低运费.分析:本题的关键在于表示出、两地的电脑台数,再用函数单调性求最低运费.点评:本例题属于经费预算问题,其数学模型表现为一次函数模型求最值的问题.听课随笔【师生互动】学生质疑教师释疑高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )版权所有:高考资源网()版权所有:高考资源网()高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )版权所有:高考资源网()版权所有:高考资源网()

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3