1、第3、4章 抛体运动 匀速圆周运动 单元测试 时间:90分钟分值:100分第卷(选择题,共40分)题号12345678910答案一、选择题(每小题4分,共40分)1 如图1所示,一块橡皮用细线悬挂于O点,用铅笔靠着线的左侧水平向右匀速移动,运动中始终保持悬线竖直,则橡皮运动的速度()图1A. 大小和方向均不变B. 大小不变,方向改变C. 大小改变,方向不变D. 大小和方向均改变解析:由于绳长不变,橡皮参与的两个方向的运动(水平、竖直)均为匀速运动,因此橡皮运动的速度不变答案:A2一质点以一定的速度通过P点时,开始受到一个恒力F的作用,则此后该质点的运动轨迹不可能是图2中的()图2AaBbCc
2、Dd解析:圆周运动所需的向心力是方向时刻变化的变力,而本题中质点所受的是恒力,故不可能做圆周运动,所以a是不可能的答案:A3如图3所示,从一根空心竖直钢管A的上端边缘,沿直径方向向管内水平抛入一钢球,球与管壁多次相碰后落地(球与管壁相碰时间不计),若换一根等高但较粗的钢管B,用同样的方法抛入此钢球,则运动时间()图3A在A管中的球运动时间长B在B管中的球运动时间长C在两管中的球运动时间一样长D无法确定解析:运动时间由竖直高度决定答案:C4直径为d的纸制圆筒,以角速度绕中心轴匀速转动,把枪口垂直圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,则子弹的速度不可能是()Ad/ Bd/2 Cd/
3、3 Dd/4解析:如图4所示,若子弹从圆筒左侧S孔穿入沿直线运动,孔S做匀速圆周运动,孔转至最右侧时子弹恰好穿出,子弹位移为d,所以孔与圆心相连的半径转过的角度为(2n1),所以子弹速度v(n0,1,2,)图4答案:BD5某人划船渡过一条河,当划行速度和水流速度一定,且划行速度大于水流速度,过河的最短时间是t1;若以最小位移过河,需时间t2,则船速v1与水速v2之比为()At2t1 Bt2Ct1(t1t2) Dt1t2解析:设河宽为L,若过河时间最短,则垂直河岸划行,Lv1t1,若以最小位移过河,如图5所示,设船划行方向与上游河岸成角,则Lv1sin t2,v1t1v1sin t2,sin ,
4、又因图5cos ,v1v2t2.答案:B6如图6所示,在水平转台上放一个质量M2 kg的木块,它与转台间的最大静摩擦力Ffmax6.0 N,绳的一端系住木块,穿过转台中心孔O(孔光滑),另一端悬挂一个质量m1.0 kg的物体,当转台以角速度5 rad/s匀速转动时,木块相对转台静止,则木块到O点的距离可以是(g取10 m /s2,M,m均视为质点)()图6A0.04 m B0.08 m C0.16 m D0.32 m解析:对转台上的木块,在水平方向受绳拉力和最大静摩擦力的合力提供向心力时,有最大半径Rmax,则FTFfmaxM2Rmax,其中FTmg,解得Rmax0.32 m;当两力之差提供向
5、心力时,有最小半径Rmin,FTFfmaxM2Rmin,Rmin0.08 m,所以木块在转台上随转台做匀速圆周运动的半径范围是0.08 mR0.32 m,BCD正确答案:BCD7如图7所示,一根不可伸长的轻绳一端拴着一个小球,另一端固定在竖直杆上,当竖直杆以角速度转动时,小球跟着杆一起做匀速圆周运动,此时绳与竖直方向的夹角为,下列关于与关系的图象正确的是()图7解析:小球做圆周运动的向心力由绳的拉力和重力的合力提供,由受力分析得:F向mgtan ,由几何关系可知小球做圆周运动的半径为rlsin ,所以:mgtan mlsin 2解得,分析可知0时,0;090范围内增大,则增大,由于A、B、C图
6、均过原点,因此均不正确,只有D图符合题意答案:D8如图8所示的皮带传动中,下列说法正确的是()图8AP点与R点的角速度相同,所以向心加速度也相同BP点的半径比R点的半径大,所以P点的向心加速度较大CP点与Q点的线速度大小相同,所以向心加速度也相同DQ点与R点的半径相同,所以向心加速度也相同解析:首先确定P点与R点属于同一个整体,所以角速度相同;P点与Q点是通过皮带传动的两个轮子边缘上的点,所以线速度大小相同根据向心加速度的公式a2rv进行判断可知选项B正确,选项A、C、D均错误答案:B9某机器内有两个围绕各自的固定轴匀速转动的铝盘A、B,A盘上有一个信号发射装置P,能发射水平红外线,P到圆心的
7、距离为28 cm.B盘上有一个带窗口的红外线信号接收装置Q,Q到圆心的距离为16 cm.P、Q转动的线速度大小相同,都是4 m/s.当P、Q正对时,P发出的红外线恰好进入Q的接收窗口,如图9所示,Q接收到红外线信号的周期是()图9A0.56 s B0.28 s C0.16 s D0.07 s解析:在相同的时间t内P转过的角度与Q转过的角度之比为,即P转4圈,Q转7圈,P、Q再次水平相对因此,Q接收到红外线信号的周期T4TP44 s0.56 s,故选项A正确答案:A10如图10所示,a、b两质点从同一点O分别以相同的水平速度v0沿x轴正方向被抛出,a在竖直平面内运动,落地点为P1,b沿光滑斜面运
8、动,落地点为P2.P1和P2在同一水平面上,不计空气阻力则下面说法中正确的是()图10Aa、b的运动时间相同Ba、b沿x轴方向的位移相同Ca、b落地时的速率相同Da、b落地时的速度相同解析:a球运动可分解为竖直方向自由落体运动和水平方向匀速直线运动:x1v0t1,hgtb球运动可分解为水平方向匀速直线运动和沿斜面向下匀加速运动,设斜面倾角为,则:x2v0t2,Lgsin t由以上各式可知,t1t2,x1x2,选项A、B错;又落地时v1,v2联立上式解得v1v2,选项C正确;由于落地点速度方向不同,故选项D错答案:C第卷(非选择题,共60分)二、填空题(每小题6分,共24分)11在研究平抛物体运
9、动的实验中,可以测出小球经过曲线上任意位置的瞬时速度,实验步骤如下:A让小球多次从_位置上由静止滚下,记下小球经过卡片孔的一系列位置;B按课本装置图安装好器材,注意斜槽_,记下小球经过斜槽末端时重心位置O点和过O点的竖直线;C测出曲线某点的坐标x、y,算出小球平抛时的初速度D取下白纸,以O为原点,以竖直线为轴建立坐标系,用平滑曲线画平抛轨迹请完成上述实验步骤,并排列上述实验步骤的合理顺序:_.解析:本实验要求小球做平抛运动必须初速度相同,所以释放小球需在同一位置;斜槽末端切线水平是保证小球的初速度方向水平,从而保证做平抛运动答案:同一末端切线水平BADC12做物体平抛运动的实验时,只画出了如图
10、11所示的一部分曲线,在曲线上取A、B、C三点,测得它们的水平距离均为x0.2 m,竖直距离h10.1 m,h20.2 m,试由图示求出平抛物体的初速度v0_m/s,平抛原点距A点的水平距离为x_m(g取10 m/s2)图11解析:由匀变速运动规律得h2h1gt2,得t0.1 s,所以v0x/t2 m/s.B点的竖直分速度vBy(h1h2)/2t1.5 m/s,则A点的竖直分速度vAyvBygt1.5 m/s100.1 m/s0.5 m/s,小球从原点到A经历了时间tvAy/g0.05 s,抛出点距A点的水平距离xv0t20.05 m0.1 m.答案:20.113赛车沿半径为R的圆赛道行驶,设
11、赛道路面是水平的,路面产生摩擦力的最大值是车重的k倍,要使赛车不致冲出赛道,车速最大不能超过_解析:赛车拐弯,由静摩擦力提供向心力,当fmF 向时,vm最大,故kmgmv/R,得vm.答案:14一物理兴趣小组利用学校实验室的数字实验系统探究物体做圆周运动时向心力与角速度、半径的关系(1)首先,他们让一砝码做半径r为0.08 m的圆周运动,数字实验系统通过测量和计算得到若干组向心力F和对应的角速度,如下表,请你根据表中的数据在图12甲上绘出F的关系图象.实验序号12345678F/N2.421.901.430.970.760.500.230.06/(rads1)28.825.722.018.01
12、5.913.08.54.3图12(2)通过对图象的观察,兴趣小组的同学猜测F与2成正比,你认为,通过进一步的转换,可以通过绘出_关系图象确定他们的猜测是否正确(3)在证实了F2之后,他们将砝码做圆周运动的半径r再分别调整为0.04 m、0.12 m,又得到了两条F图象,他们将三次实验得到的图象放在一个坐标系中,如图乙所示,通过对三条图象的比较、分析、讨论,他们得到Fr的结论你认为他们的依据是_.(4)通过上述实验,他们得出:做圆周运动的物体受到的向心力F与角速度、半径r的数学关系式是Fk2r,其中比例系数k的大小为_(保留两位小数),单位是_解析:(1)描点作图如图13曲线所示;图13(2)通
13、过画F2图可验证F与2成正比是否正确;(3)从图中可看出,当相同时,半径之比为123时对应的向心力之比也为123;(4)从图表可知:128.8,F12.42;225.7,F21.90;322.0,F31.43;又由r0.08,代入Fk2r,可得k0.04;由Fk2r得k,的单位在进行运算时应为s1,因此,k的单位为,又1 N1 kgms2得k单位为kg.答案:(1)如图13所示曲线(2)F与2(3)一定时,半径之比为123时对应的向心力之比为123(4)0.04 千克三、计算题(共36分)15(8分)有A、B、C三个小球,A距地面较高,B其次,C最低,如图14所示A、C两球在同一竖直线上,相距
14、10 m,三球同时开始运动,A球竖直下抛,B球平抛,C球竖直上抛,三球初速度大小相同,5 s后三球相遇,不考虑空气阻力求:图14(1)三球的初速度大小是多少?(2)开始运动时,B球离C球的水平距离和竖直高度各是多少?解析:由题中条件可知,A球、C球做匀变速直线运动,B球做平抛运动,相遇时三个小球在空中运动的时间相等设在D点相遇,取竖直向下为正方向(1)对A球:hADv0tgt2;对C球:hCDv0tgt2hADhCD10 m,即2v0t10,解得v0m/s1 m/s(2)B球与C球的水平距离为sBCv0t15 m5 mB球与C球的竖直距离为hBChBDhCDgt2(v0tgt2)v0t15 m
15、5 m.16(8分)如图15所示,质量m1 kg的小球用细线拴住,线长l0.5 m,细线所受拉力达到F18 N时就会被拉断当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断若此时小球距水平地面的高度h5 m,重力加速度g10 m/s2,求小球落地处到地面上P点的距离(P点在悬点的正下方)图15解析:球摆到悬点正下方时,线恰好被拉断,说明此时线的拉力F18 N,则由Fmgm可求得线断时球的水平速度为vm/s2 m/s线断后球做平抛运动,由hgt2可求得物体做平抛运动的时间为ts1 s则平抛运动的水平位移为xvt21 m2 m.17(10分)如图16所示,游乐场翻滚过山车上的乘客常常会在高速
16、旋转或高空倒悬时吓得魂飞魄散,但这种车的设计有足够的安全系数,离心现象使乘客在回旋时稳坐在座椅上,还有安全棒紧紧压在乘客胸前,在过山车未达终点以前,谁也无法将它们打开设想如下数据,轨道最高处离地面32 m,最低处几乎贴地,圆环直径15 m,过山车经过最低点时的速度约25 m/s,经过最高点时的速度约18 m/s.试利用牛顿第二定律和圆周运动的知识,探究这样的情况下能否保证乘客的安全?(g取10 m/s2)图16解析:首先我们分析一下当过山车运动到环底和环顶时车中人的受力情况:重力mg、FN上和FN下,FN下和FN上分别为过山车在底部和顶部时对人的支持力(为使问题简化,可不考虑摩擦及空气阻力)我
17、们知道,过山车沿圆环滑动,人也在做圆周运动,这时人做圆周运动所需的向心力由mg和 FN提供用v下表示人在圆环底部的速度,v上表示人在圆环顶部的速度,R表示环的半径,则在底部:FN下mgm在顶部:FN上mgm由式可知:FN下mgm,就是说,在环的底部时,过山车对人的支持力比人的体重增大了m,这时人对滑车座位的压力自然也比体重大m,好像人的体重增加了m.由于底部的速度较大,所以人的体重增加好多倍,使人紧压在椅子上不能动弹由式可知,在环的顶部,当重力mg等于向心力m时,恰可以使人沿圆环做圆周运动,不掉下来,由mgm可得v上8.7 m/s,这就是说,过山车要安全通过顶点,有8.7 m/s的速度就足够了
18、,而过山车通过顶点时的速度约18 m/s,比8.7 m/s大得多,所以过山车和人一定能安全地通过顶点,绝对安全,不必担心答案:见解析18(10分)如图17所示为一自行车的局部结构示意图,设连接脚踏板的连杆长为L1,由脚踏板带动半径为r1的大轮盘(牙盘),通过链条与半径为r2的小轮盘(飞轮)连接,小轮盘带动半径为R的后轮转动,使自行车在水平路面上匀速前进图17(1)自行车牙盘的半径一般要大于飞轮的半径,想想看,这是为什么?(2)设L118 cm,r112 cm,r26 cm,R30 cm,为了维持自行车以v3 m/s的速度在水平路面上匀速行驶,请你计算一下每分钟要踩踏板几圈(3)若有某种变速自行
19、车有6个飞轮和3个牙盘,牙盘和飞轮的齿数如下表所示,若人骑该车行进的速度一定,选用哪种齿数的牙盘和飞轮,人踩脚踏板的角速度最小?为什么?名称牙盘飞轮齿数N/个483828151618212428解析:(1)通过链条相连的牙盘和飞轮边缘的线速度相同,当牙盘的半径大于飞轮的半径时,由vR知,人踩脚踏板的角速度小于飞轮的角速度(2)设牙盘转动的角速度为1,自行车后轮转动的角速度,即飞轮的角速度为2,人每分钟要踩脚踏板n圈,则2rad/s10 rad/s.由2r21r1,得15 rad/s,nr/sr/min48 r/min.(3)由左栏与(2)知,不管牙盘还是飞轮,相邻的两齿间的弧长相同,故有,从而,故12,由于v、R一定,当最小时1最小,故应选齿数为15的飞轮和齿数为48的牙盘