ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:592KB ,
资源ID:555969      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-555969-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016版数学理一轮复习三年高考真题(2012-2014)分类汇编:2014年 考点41 椭圆 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016版数学理一轮复习三年高考真题(2012-2014)分类汇编:2014年 考点41 椭圆 .doc

1、考点41 双曲线一、选择题1.(2014福建高考文科12)在平面直角坐标系中,两点间的“L-距离”定义为则平面内与x轴上两个不同的定点的“L-距离”之和等于定值(大于)的点的轨迹可以是 ( )【解题指南】本题是新定义问题,考查学生分析问题、解决问题的能力【解析】选A.以线段的中点为坐标原点,所在直线为x轴,建立平面直角坐标系不妨设,则由题意(为定值),整理得当时,方程化为,即,即当时,方程化为,即,即当时,方程化为,即所以A图象符合题意2.(2014福建高考理科8)8在下列向量组中,可以把向量表示出来的是( )A. B . C. D. 【解析】只有B选项两个向量不共线,其它选项的向量都是共线的

2、,不共线的向量方可成为基底,才可以表示向量3.(2014福建高考理科9)设分别为圆和椭圆上的点,则两点间的最大距离是( )A. B. C. D.【解题指南】两动点问题,可以化为一动一静,因此考虑与圆心联系【解析】D.圆心M,设椭圆上的点为,则,当时,所以二、填空题1. (2014辽宁高考理科1)已知椭圆,点与点C的焦点不重合,若关于C的焦点的对称点分别为,线段的中点在C上,则【解析】根据题意,椭圆的左右焦点为,由于点的不确定性,不妨令其为椭圆的左顶点,线段的中点为椭圆的上顶点,则关于C的焦点的对称点分别为,而点,据两点间的距离公式得答案:【误区警示】 在无法明确相关点的具体情况的时候,可以取特

3、殊情形处理问题。避免对一般情况处理的复杂性2. (2014辽宁高考文科1)与(2014辽宁高考理科1)相同(2014辽宁高考文科1)已知椭圆,点与点C的焦点不重合,若关于C的焦点的对称点分别为,线段的中点在C上,则【解析】根据题意,椭圆的左右焦点为,由于点的不确定性,不妨令其为椭圆的左顶点,线段的中点为椭圆的上顶点,则关于C的焦点的对称点分别为,而点,据两点间的距离公式得答案:【误区警示】 在无法明确相关点的具体情况的时候,可以取特殊情形处理问题。避免对一般情况处理的复杂性三、解答题1.(2014天津高考文科T18)设椭圆=1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知

4、|AB|=|F1F2|.(1)求椭圆的离心率.(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=2.求椭圆的方程.【解析】(1)设椭圆右焦点F2的坐标为(c,0),由|AB|=|F1F2|,可得a2+b2=3c2,又b2=a2-c2,则.所以椭圆的离心率e=.(2)由(1)知a2=2c2,b2=c2,故椭圆方程为=1.设P(x0,y0),由F1(-c,0),B(0,c),有=(x0+c,y0), =(c,c),由已知,有=0,即(x0+c)c+y0c=0.又c0,故有x0+y0+c=0.因为点P在椭圆上,故=1.由和可得+4cx

5、0=0,而点P不是椭圆的顶点,故x0=-,代入得y0=,即点P的坐标为.设圆的圆心为T(x1,y1),则x1=-c,y1=c,进而圆的半径r=c.由已知,有|TF2|2=|MF2|2+r2,又|MF2|=2,故有=8+.解得c2=3.所以所求椭圆的方程为=1.2. (2014天津高考理科18)(本小题满分13分)设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.(1)求椭圆的离心率;(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切. 求直线的斜率.【解析】(1)设椭圆的右焦点的坐标为.由,可得,又,则.所以,椭圆的离心率.,所以,解得,.(2)由(1)知,.

6、故椭圆方程为.设.由,有,.由已知,有,即.又,故有. 又因为点在椭圆上,所以. 由和可得.而点不是椭圆的顶点,故,代入得,即点的坐标为.设圆的圆心为,则,进而圆的半径.设直线的斜率为,依题意,直线的方程为.由与圆相切,可得,即,整理得,解得.所以,直线的斜率为或.3. (2014新课标全国卷高考文科数学T20)(本小题满分12分)设F1,F2分别是椭圆+=1的左右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为2,且=5,求a,b.【解题提示】(1)利用直线MN的斜率为再结合a2=b2+c2表示出关

7、于离心率e的方程,解方程求得离心率.(2)结合图形,利用椭圆的性质和焦半径公式求得a,b.【解析】(1)因为由题知, =,所以=,且a2=b2+c2.联立整理得:2e2+3e-2=0,解得e=.所以C的离心率为.(2)由三角形中位线知识可知,MF2=22,即=4.设F1N=m,由题可知MF1=4m.由两直角三角形相似,可得M,N两点横坐标分别为c,- c.由焦半径公式可得:MF1=a+ec,NF1=a+e,且MF1NF1=41,e=,a2=b2+c2.联立解得a=7,b=2.所以,a=7,b=2.4. (2014浙江高考理科21)(本题满分15分)如图,设椭圆动直线与椭圆只有一个公共点,且点在

8、第一象限.(1) 已知直线的斜率为,用表示点的坐标;(2) 若过原点的直线与垂直,证明:点到直线的距离的最大值为.【解析】(1)设直线的方程为,由,消去得由于与只有一个公共点,故,即,所以解得点的坐标为,又点在第一象限,故点的坐标为(2)由于直线过原点且与直线垂直,故直线的方程为,所以点到直线的距离因为,所以当且仅当时等号成立所以,点到直线的距离的最大值为.5.(2014陕西高考文科T20)(本小题满分13分)已知椭圆+=1(ab0)经过点(0,),离心率为,左、右焦点分别为F1(-c,0),F2(c,0). (1)求椭圆的方程.(2)若直线l:y=-x+m与椭圆交于A,B两点,与以F1F2为

9、直径的圆交于C,D两点,且满足=,求直线l的方程.【解题指南】(1)先由已知得椭圆短半轴长,再由离心率及a,b,c间的关系,列方程组得解.(2)先利用直线与圆相交求得弦CD的长,再利用椭圆与直线相交得AB的长,通过解方程得m值从而得解.【解析】(1)由题设知解得a=2,b=,c=1,所以椭圆的方程为+=1.(2)由题设,以F1F2为直径的圆的方程为x2+y2=1,所以圆心到直线的距离d=.由d1得|m|.(*)所以|CD|=2=2=.设A(x1,y1),B(x2,y2),由得x2-mx+m2-3=0,由根与系数的关系可得x1+x2=m,x1x2=m2-3.所以|AB|=.由=得=1,解得m=,满足(*)所以直线l的方程为y=-x+或y=-x-.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3