1、江苏省东台中学2006届高三第六次阶段性考试物理试题第卷 选择题(共40分)一、本卷共10小题,每小题4分,共40分. 每题给出的四个选项中至少有一个选项是正确的. 全部选对的得4分,选对但不全的得2分,有选错或不答的得0分.1某房间(不密闭),上午10时的温度为15,下午2时的温度为25,假定房间内气压无变化,则下午2时与上午10时相比较,房间内的A气体分子撞击墙壁单位面积的数目减少了B空气分子的平均动能增大C所有空气分子的速率都增大 D气体密度减小了2如图所示水下光源S向水面A点发射一束光线,水面上方空气中折 射光线分别为ab两束,则:Aa、b两束光相比较,水对b光的折射率大B光波与机械波
2、的速度都是由介质决定的, a、b两束光在水中速度值相等C在水中a光的速度比b光的小D若保持入射点A位置不变,将入射光线逆时针旋转,从水面上方观察,b光先消失3图中a、b、c是匀强电场中同一平面上的三个点,各点的电势分别是=10V, =2V, =6V,则在下列各示意图中能表示该电场强度方向的是P2x/my/cm4如图为一列简谐横波的图象,质点P此时的动量为mv,经过0.2s,质点P的动量大小和方向都不变再经过0.2s,质点P的动量大小不变,方向改变,由此可判断A波向左传播,波速为5m/sB波向右传播,波速为5m/sC该波与一个频率为1.25Hz的波可能发生干涉现象D该波与一个频率为1.25Hz的
3、波不可能发生干涉现象5做平抛运动的小球,在第n秒内、第(n+1)秒内相等的物理量是(不计空气阻力,设小球未落地)A竖直方向的位移B水平方向的位移C动量的变化量D重力做的功610月14日5时56分,为确保神舟六号飞船正常运行,在其飞行到第30圈时,在北京航天飞行控制中心的统一指挥调度下,神舟六号飞船进行了首次轨道维持,飞船发动机点火工作了6.5秒,稍后,在大西洋预定海域的远望三号测量船向北京航天飞空中心传来的数据表明,此次轨道维持获得圆满成功,若不进行轨道维持,由于受大气阻力等因素的影响,飞船的飞行轨道参数会发生微小变化,则这些变化是A轨道半径变小B轨道半径变大C运行速度变小 D运行速度变大7通
4、电导体细棒放在倾斜的金属导轨上,接成如图所示的闭合电路,细棒恰好在导轨上静止. 下面的另外四个侧视图中已标出了细棒所处的匀强磁场方向,其中细棒与导轨之间摩擦力可能为零的图是 8如图所示,C为两极板水平放置的空气平行板电容器,闭合开关S,当滑动变阻器R1、R2的滑片处于各自的中点位置时,悬在电容器C两极板间的带电尘埃P恰好处于静止状态。要使尘埃P向下加速运动,下列方法中可行的是A把R1的滑片向左移动B把R2的滑片向左移动C把R2的滑片向右移动D把开关S断开E rSA1A29如图所示电路,将两个相同的电流计分别改装成电流表A1(0-3 A)和电流表A2 (0-0.6 A),把这两个电流表并联接入电
5、路中测量电流.则下列说法中正确的是AA1的指针半偏时,A2的指针也半偏BA1的指针还没有满偏,A2的指针已经满偏CA1的读数为1 A时,A2的读数为0.6 ADA1的读数为1 A时,干路中的电流为1.2 A10长木板A放在光滑的水平面上,质量为m的物块B以水平初速度v0从A的一端滑上A的水平上表面,它们的vt图线如图 所示,则从图中所给出的数据v0、v1、t1及物块质量m A可以求出A板获得的动能B可以求出系统损失的机械能 C可以求出木板的最小长度D不可以求出A、B之间的动摩擦因数第卷(非选择题 共110分)二、本题共二小题,20分。11在“验证机械能守恒定律”的实验中,电磁打点计时器使用46
6、V 电源,如图,是一符合要求的纸带,每隔T时间打下一个点,纸带上0为始点,A、B、C、D为连续打下的四个点,经测量,O到A、B、C、D的距离分别为hA、hB、hC、hD,若重物质量为m, 根据纸带,可以算出瞬时速度的点是 ,其表达式为: 。(能计算出的都要求写出)在误差范围内,根据上述数据能验证下列哪些等式 ( )(选序号)、mghA=mvA2 、mghB=mvB2、mghAmvA2= mghBmvB2 、mvC2 mghC = mvB2mghB12如图是练习使用示波器实验的示意图,图中“X输入”、 “Y输入”、“地”为信号输入接线柱。实验要求用示波器测右图b、c间的直流电压。把b接“地”接线
7、柱,欲使P滑动时,亮斑在竖直方向移动,则c端应接 接线柱。实验发现,当P滑到最左端时,亮斑恰好在荧光屏的中心;当P滑到最右端时,亮斑向下偏离中心3.0格。当P滑到某点时,亮斑向下偏离中心2.5格,则此时b、c间的电压为 V。(图中电源是电动势为1.5V,内阻不计的一节干电池)三、本题共六小题,共90分)解答应写出必要的文字说明、方程式和重要的演算步骤。只写出最后答案的不能得分。有数值计算的题答案中必须明确写出数值和单位。13.(14分)某人造地球卫星质量为m,绕地球运动的轨迹为椭圆.已知它在近地点距地面高度为h1,速度为v1,加速度为a1;在远地点距地面高度为h2,速度为v2,已知地球半径为R
8、,求(1)该卫星由远地点到近地点万有引力所做的功;(2)该卫星在远地点的加速度a。14(14分)如图所示,MN、PQ是两条水平放置的平行光滑导轨,其电阻可以忽略不计,轨道间距l=0.60m匀强磁场垂直于导轨平面向下,磁感应强度B =1.010-2T,金属杆ab垂直于导轨放置,与导轨接触良好,ab杆在导轨间部分的电阻r=1.0在导轨的左端连接有电阻值分别为Rl、R2的小灯泡,阻值分别为Rl=3.0,R2=6.0ab杆在外力作用下以=5.0ms的速度向右匀速运动时小灯泡R2恰能正常发光,此时:(1)ab杆哪端的电势高? (2)求通过R2的电流I2(3)将灯泡R1换成线圈电阻为0.1的玩具电动机,
9、ab杆在外力作用下以1=10.0ms的速度向右匀速运动时小灯泡R2同样能正常发光,此时玩具电动机输出功率是多少?15(14分)如图所示,一平行板电容器水平放置,板间距离为d,上极板开有一小孔,质量均为m,带电荷量均为+q的两个带电小球(视为质点),其间用长为L的绝缘轻杆相连,处于竖直状态,已知d=2L,今使下端小球恰好位于小孔中,由静止释放,让两球竖直下落. 当下端的小球到达下极板时,速度刚好为零. 试求 两极板间匀强电场的电场强度; 球运动中的最大速度.Os/2s/2AhB16(16分) 一轻质细绳一端系一质量为kg的小球A,另一端挂在光滑水平轴O上,O到小球的距离为L=0.1m,小球跟水平
10、面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s为2m,动摩擦因数为0.25现有一小滑块B,质量也为m,从斜面上滑下,与小球碰撞时交换速度,与挡板碰撞不损失机械能若不计空气阻力,并将滑块和小球都视为质点,g取10m/s2,试问:(1)若滑块B从斜面某一高度h处滑下与小球第一次碰撞后,使小球恰好在竖直平面内做圆周运动,求此高度h.(2)若滑块B从h=5m处滑下,求滑块B与小球第一次碰后瞬间绳子对小球的拉力(3)若滑块B从h=5m 处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数17我国科学家在对放射性元素的研究中,进行了如下
11、实验:如图所示,以MN为界,左、右两边分别是磁感应强度为2B和B的匀强磁场,且磁场区域足够大。在距离界线为l处平行于MN固定一个长为s光滑的瓷管PQ,开始时一个放射性元素的原子核处在管口P处,某时刻该原子核平行于界线的方向放出一质量为m、带电量-e的电子,发现电子在分界线处速度方向与界线成60角进入右边磁场,反冲核在管内匀速直线运动,当到达管另一端Q点时,刚好又俘获了这个电子而静止求:(1)电子在两磁场中运动的轨道半径大小(仅用l表示)和电子的速度大小;MNPQlB2B(2)反冲核的质量18如图所示,光滑水平面上,质量为2m的小球B连接着轻质弹簧,处于静止;质量为m的小球A以初速度v0向右匀速
12、运动,接着逐渐压缩弹簧并使B运动,过一段时间,A与弹簧分离。(弹簧始终处于弹性限度以内) (1)在上述过程中,弹簧的最大弹性势能是多大; (2)若开始时在B球的右侧某位置固定一块挡板(图中未画出),在A 球与弹簧分离之前使B球与挡板发生碰撞,并在碰后立刻将挡板撤走。设B球与固定挡板的碰撞时间极短,碰后B球的速度大小不变但方向相反。试求出此后弹簧的弹性势能最大值的范围。m2mABv0参考答案12345678910AB DA DBACBCA DcBADA BC11、交流 (2分) B、C (2分) VB= (hC-hA)/2T VC= (hD-hB)/2T (4分) 2、4(4分)12、Y输入 (
13、4分 1.25V(4分13(14分)(1)根据动能定理,有W= (2)设地球的质量为M,由牛顿第二定律得:近地点: 远地点: 解得:aa 14(14分) (1) (2分)a端电势高 (2) (6分)当ab杆匀速运动时,产生的感应电动势为E = Blv=3.010-2V,Rl与R2并联的总电阻为R并= 根据闭合电路欧姆定律可知,通过ab杆的电流为, I2= I= 10-2A(3) (6分)因为ab杆以1=10.0ms的速度向右匀速运动时小灯泡R2同样能正常发光, 此时,路端电压U=2.010-2V 感应电动势为E =6.010-2V,电路总电流I总=410-2A,玩具电动机输出功率为P=U(I总
14、- I2)- (I总- I2)2r机=610-4w15(14分)解:(1)下端小球从静止进入电场,到运动至下极板速度为零这一过程。 两球组成的系统先做匀加速运动,直至上端小球进入电场后改做匀减速运动,且这两个加速度大小相等。所以 即 (2)加速度大小 下端小球下落距离为L时,球的速度最大。由得 评分标准:本题共14分,其中各4分,3分16(16分)(1)h1=05m(2)T=48N(3)n=10次O1O2O1O2甲乙17、(16分)由题意知有两种可能轨迹,分别如图甲、乙所示。对于图甲所示情况:(1)R1=l+R1sin30 (1分) R1=2l (1分)由R1=,R2= (1分)得R2=2R1
15、=4l (1分) v= (1分)(2)运行时间:t=2T1+T2=2+= (1分)反冲核的速度V= (1分) 由动量守恒mv-MV=0 (1分)得反冲核的质量M= (1分)或将s= 2(R2sin60-R1sin60)=2l代入得对于图乙所示情况:由图乙可得l=R1+R1sin30 R1=, (1分)由R1=,R2=得R2=2R1= (1分) v= (1分)(2)运行时间:t=2T1+T2=2+= (1分)反冲核的速度V= (1分)由动量守恒mv-MV=0 (1分)得反冲核的质量M= (1分) (或将s=2R1cos30=代入得M=)18、当A球与弹簧接触以后,在弹力作用下减速运动,而B球在弹
16、力作用下加速运动,弹簧势能增加,当A、B速度相同时,弹簧的势能最大。设A、B的共同速度为v,弹簧的最大势能为E,则A、B系统动量守恒:由机械能守恒:联立两式得:设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。系统动量守恒:B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同(设为v共)时,弹簧势能最大,为Em,则: 由两式得:代入式,化简得:而当弹簧恢复原长时相碰,vB有最大值vBm,则: mv0=mvA+2mvBm mv02/2=mvA2/2+2mvBm2/2 联立以上两式得:vBm 即vB的取值范围为:结合式可得:当vB时,Em有最大值为:当vB时,Em有最小值为: 评分标准:式各2分,式3分,各1分,各2分,共16分。