1、课时分层作业(二)导数的几何意义(建议用时:40分钟)一、选择题1设f (x0)0,则曲线yf (x)在点(x0,f (x0)处的切线()A不存在B与x轴平行或重合C与x轴垂直D与x轴相交但不垂直B由导数的几何意义可知选项B正确2若函数f (x)x,则f (1)()A2BC1D0Df (1) 0.3已知点P(1,1)为曲线上的一点,PQ为曲线的割线,当x0时,若kPQ的极限为2,则在点P处的切线方程为()Ay2x1By2x1Cy2x3Dy2x2B由题意可知, 曲线在点P处的切线方程为y12(x1),即2xy10.4在曲线yx2上切线倾斜角为的点是()A(0,0)B(2,4)C.DDy (2xx
2、)2x,令2xtan 1,得x.y,所求点的坐标为.5如图所示,函数yf (x)的图象在点P处的切线方程是yx8,则f (5)f (5)等于()A2B3C4D5A易得切点P(5,3),f (5)3,k1,即f (5)1.f (5)f (5)312.二、填空题6已知函数yax2b在点(1,3)处的切线斜率为2,则_.2f (1)2,又 (ax2a)2a,2a2,a1.又f (1)ab3,b2.2.7曲线yx22x3在点A(1,6)处的切线方程是_.4xy20因为yx22x3,切点为点A(1,6),所以斜率ky|x1 (x4)4,所以切线方程为y64(x1),即4xy20.8若曲线yx22x在点P
3、处的切线垂直于直线x2y0,则点P的坐标是_(0,0)设P(x0,y0),则y| (2x02x)2x02.因为点P处的切线垂直于直线x2y0,所以点P处的切线的斜率为2,所以2x022,解得x00,即点P的坐标是(0,0)三、解答题9求过点P(1,2)且与曲线y3x24x2在点M(1,1)处的切线平行的直线解曲线y3x24x2在点M(1,1)处的切线斜率ky|x1 (3x2)2.过点P(1,2)的直线的斜率为2,由点斜式得y22(x1),即2xy40.所以所求直线方程为2xy40.10已知曲线yx2,(1)求曲线在点P(1,1)处的切线方程;(2)求曲线过点P(3,5)的切线方程解(1)设切点
4、为(x0,y0),y| 2x0,y|x12.曲线在点P(1,1)处的切线方程为y12(x1),即y2x1.(2)点P(3,5)不在曲线yx2上,设切点为A(x0,y0),由(1)知,y|2x0,切线方程为yy02x0(xx0),由P(3,5)在所求直线上得5y02x0(3x0),再由A(x0,y0)在曲线yx2上得y0x,联立,得x01或x05.从而切点为(1,1)时,切线的斜率为k12x02,此时切线方程为y12(x1),即y2x1,当切点为(5,25)时,切线的斜率为k22x010,此时切线方程为y2510(x5),即y10x25.综上所述,过点P(3,5)且与曲线yx2相切的直线方程为y
5、2x1或y10x25.1已知函数f (x)的图象如图所示,f (x)是f (x)的导函数,则下列数值排序正确的是()A0f (2)f (3)f (3)f (2)B0f (3)f (3)f (2)f (2)C0f (3)f (2)f (3)f (2)D0f (3)f (2)f (3)f (3)记A(2,f (2),B(3,f (3),作直线AB,则直线AB的斜率kf (3)f (2),由函数图象,可知k1kk20,即f (2)f (3)f (2)f (3)0.故选B.2设f (x)为可导函数,且满足 1,则过曲线yf (x)上点(1,f (1)处的切线斜率为()A2B1C1D2D 1, 2,即f
6、 (1)2.由导数的几何意义知,曲线在点(1,f (1)处的切线斜率kf (1)2,故选D.3若函数yf (x)的图象在x4处的切线方程是y2x9,则f (4)f (4)_.3由题意得f (4)2491,f (4) 2,从而f (4)f (4)1(2)3.4已知函数yf (x)的图象如图所示,则函数yf (x)的图象可能是_(填序号)由yf (x)的图象及导数的几何意义可知,当x0,当x0时f (x)0,当x0时f (x)0,故符合5已知曲线f (x).(1)求曲线过点A(1,0)的切线方程;(2)求满足斜率为的曲线的切线方程解(1)f (x) .设过点A(1,0)的切线的切点为P,则f (x0),即该切线的斜率为k.因为点A(1,0),P在切线上,所以,解得x0.故切线的斜率k4.故曲线过点A(1,0)的切线方程为y4(x1),即4xy40.(2)设斜率为的切线的切点为Q,由(1)知,kf (a),得a.所以切点坐标为或.故满足斜率为的曲线的切线方程为y(x)或y(x),即x3y20或x3y20.