ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.44MB ,
资源ID:550269      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-550269-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》云南省昆明市禄劝县第一中学2019-2020学年高二下学期期中考试数学理科试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》云南省昆明市禄劝县第一中学2019-2020学年高二下学期期中考试数学理科试题 WORD版含解析.doc

1、高考资源网() 您身边的高考专家理科数学第卷(选择题,共60分)注意事项:1答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚2每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号在试题卷上作答无效一、选择题(本大题共12小题,每小题5分,共60分在每小题所给出的四个选项中,只有一项是符合题目要求的)1.设全集,则( )A. B. C. D. 【答案】A【解析】【分析】先求的补集,再求交集【详解】因为全集,所以,故选:A【点睛】本题考查集合的综合运算,掌握交并补的定义是解题关键2.设,则=A. 2B. C.

2、D. 1【答案】C【解析】【分析】先由复数的除法运算(分母实数化),求得,再求【详解】因为,所以,所以,故选C【点睛】本题主要考查复数的乘法运算,复数模的计算本题也可以运用复数模的运算性质直接求解3.的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题4.中国古代词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子做盘缠,次第每人多十七,要将第八数来言”题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿

3、子分到的绵是( )A. 174斤B. 184斤C. 191斤D. 201斤【答案】B【解析】用表示8个儿按照年龄从大到小得到的绵数,由题意得数列是公差为17的等差数列,且这8项的和为996,解得选B5.等于A. 1B. e-1C. eD. e+1【答案】C【解析】【分析】由题意结合微积分基本定理求解定积分的值即可.【详解】由微积分基本定理可得:.故选C.【点睛】本题主要考查微积分基本定理计算定积分的方法,属于基础题.6.若是两条不同的直线,垂直于平面,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】若,因为垂直于平面

4、,则或;若,又垂直于平面,则,所以“”是“的必要不充分条件,故选B考点:空间直线和平面、直线和直线的位置关系7.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A. -1B. 2C. 3D. 4【答案】D【解析】试题分析:解:程序在运行过程中各变量的值如下表示:S n 是否继续循环循环前 2 1第一圈-1 2 第二圈3 是,第三圈 2 4 否,则输出的结果为4,故选D考点:程序框图点评:本题考查的知识点是程序框图,在写程序的运行结果时,模拟程序的运行过程是解答此类问题最常用的办法8.已知双曲线的一条渐近线的倾斜角为,则双曲线的离心率为()A. B. C. D. 【答案】A【解析】【分

5、析】求出双曲线的渐进线方程,可得到值,再由的关系和离心率公式,即可得到答案【详解】双曲线的一条渐近线的倾斜角为,则,所以该条渐近线方程为;所以,解得;所以 ,所以双曲线的离心率为故选A【点睛】本题考查双曲线的方程与性质,考查离心率的求法,考查学生基本的运算能力,属于基础题,9.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A. 8号学生B. 200号学生C. 616号学生D. 815号学生【答案】C【解析】【分析】等差数列的性质渗透了数据分析素养使用统计思想,

6、逐个选项判断得出答案【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,所以,若,则,不合题意;若,则,不合题意;若,则,符合题意;若,则,不合题意故选C【点睛】本题主要考查系统抽样.10.某人午睡醒来,发现表停了,他打开收音机,想听电台整点报时,他等待的时间不多于15分钟的概率是( )A. B. C. D. 【答案】C【解析】【详解】想听电台整点报时,时间不多于15分钟的概率可理解为:一条线段长为60,其中听到整点报时的时间不多于15分钟为线段长为15则由几何概型,化为线段比得:,故选C.

7、11.将函数的图象向左平移个单位长度后,得到函数的图象关于轴对称,则( )A. B. C. D. 【答案】D【解析】【分析】根据函数平移关系求出,再由的对称性,得到的值,结合其范围,即可求解.【详解】因为图象关于轴对称,所以,因为,所以故选:D.【点睛】本题考查三角函数图象变换关系以及余弦函数的对称性,属于基础题12.已知函数设,若关于的不等式在上恒成立,则的取值范围是A. B. C. D. 【答案】A【解析】【详解】满足题意时的图象恒不在函数下方,当时,函数图象如图所示,排除C,D选项;当时,函数图象如图所示,排除B选项,本题选择A选项.第卷(非选择题,共90分)注意事项:第卷用黑色碳素笔在

8、答题卡上各题的答题区域内作答,在试卷上作答无效二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量,且,则_.【答案】2【解析】由题意可得解得.【名师点睛】(1)向量平行:,,.(2)向量垂直:.(3)向量的运算:.14.若,满足约束条件,则的最大值为_【答案】6【解析】【分析】首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:由,可得,画出直线,将其上下移

9、动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.15.已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于_【答案】16【解析】本小题考查球的截面圆性质、球的表面积,基础题设球半径为,圆M的半径为,则,即由题

10、得,所以16.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为_【答案】A【解析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.在数列 中,点 在直线上()求数列 的通项公式;()记 ,求数列的前n项和【答案】() ()【解析】【分

11、析】()根据点在直线上,代入后根据等差数列定义即可求得通项公式()表示出的通项公式,根据裂项法即可求得【详解】()由已知得 ,即 数列 是以 为首项,以为公差的等差数列 ()由()得 【点睛】本题考查了等差数列定义求通项公式,裂项法求和的应用,属于基础题18.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到列联表:喜欢游泳不喜欢游泳合计男生40女生30合计100且已知在100个人中随机抽取1人,抽到喜欢游泳的学生的概率为(1)请完成上面的列联表;(2)根据列联表的数据,是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由

12、参考公式与临界值表:0.1000.0500.0250.01000012.7063.8415.0246.63510.828【答案】(1)列联表见解析 (2)有,说明见解析【解析】【分析】(1)根据题意随机抽取1人喜欢游泳的概率为,喜欢游泳的人数为,即可列出列联表.(2)计算出观测值,利用独立性检验的思想即可求解.【详解】解:(1)因为在100人中随机抽取1人喜欢游泳的概率为所以喜欢游泳的人数为,所以列联表如下:喜欢游泳不喜欢游泳合计男生401050女生203050合计6040100(2),所以有99.9%的把握认为“喜欢游泳与性别有关系”【点睛】本题考查了列联表、独立性检验的基本思想,属于基础题

13、.19.在中,内角所对的边分别为,已知(1)求角C的大小(2)若,的面积为,求的周长【答案】()(). 【解析】【分析】()利用正弦定理化简已知等式可得值,结合范围,即可得解的值()利用正弦定理及面积公式可得,再利用余弦定理化简可得值,联立得从而解得周长【详解】()由正弦定理,得,在中,因,所以故, 又因为0C,所以 ()由已知,得.又,所以. 由已知及余弦定理,得, 所以,从而.即 又,所以的周长为.【点睛】本题主要考查了正弦定理,余弦定理的应用,考查了转化思想和数形结合思想,属于基础题20.如图,在底面是正方形的四棱锥中,点在底面的射影恰是的中点.(1)证明:平面平面;(2)求二面角的正弦

14、值大小.【答案】(1)见解析(2)【解析】分析】(1)推导出,从而平面,由此能证明平面平面(2)取的中点以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的大小【详解】(1)证明:依题意,得平面,又平面,所以.又,所以平面.又平面,所以平面平面.(2)取的中点,依题意,得,两两互相垂直,所以以,为,轴建立如图所示的空间直角坐标系,由已知得,所以,则,.设是平面法向量,则 令,则.设是平面的法向量,则 令,则, ,二面角的正弦值为.【点睛】本题考查面面垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题21.已知函数在处取

15、得极值.(1)求实数的值;(2)当时,求函数的最小值.【答案】(1);(2).【解析】【分析】(1)求导,根据极值的定义可以求出实数的值;(2)求导,求出时的极值,比较极值和之间的大小的关系,最后求出函数的最小值.【详解】(1),函数在处取得极值,所以有;(2)由(1)可知:,当时,函数单调递增,当时,函数单调递减,故函数在处取得极大值,因此,故函数的最小值为.【点睛】本题考查了求闭区间上函数的最小值,考查了极值的定义,考查了数学运算能力.22.已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)直线:与椭圆相交于,两点,若,试用表示.【答案】(1) (2) 【解析】【分析】(1)由题意列方程组,求解方程组即可得解;(2)由直线和椭圆联立,利用弦长公式结合韦达定理求表示即可.【详解】(1)由题意解得故椭圆C的方程为(2)设A(x1,y1),B(x2,y2),由,得(2k2+1)x2+4kmx+2m2-80,所以,因为|AB|4|,所以,所以,整理得k2(4-m2)m2-2,显然m24,又k0,所以故【点睛】本题主要考查了直线与椭圆相交的弦长问题,属于基础题.- 17 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3