1、第3讲导数及其应用1(2015课标全国改编)设函数f(x)是奇函数f(x)(xR)的导函数,f(1)0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是_2(2014课标全国改编)若函数f(x)kxln x在区间(1,)单调递增,则k的取值范围是_3(2014辽宁改编)当x2,1时,不等式ax3x24x30恒成立,则实数a的取值范围是_4(2014课标全国改编)已知函数f(x)ax33x21,若f(x)存在唯一的零点x0,且x00,则a的取值范围是_(2,);(,2);(1,);(,1)1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极
2、值(最值)是高考的常见题型.热点一导数的几何意义1函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0)处的切线的斜率,曲线f(x)在点P处的切线的斜率kf(x0),相应的切线方程为yf(x0)f(x0)(xx0)2求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同例1(1)(2015课标全国)已知函数f(x)ax3x1的图象在点(1,f(1)处的切线过点(2,7),则a_.(2)(2015徐州市质量诊断)设函数f(x)ax33x,其图象在点(1,f(1)处的切线l与直线x6y70垂直,则直线l与坐标轴围成的三角形的面积为_思维升华(1)求曲线的切线要注意“过点P的切线”与
3、“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解跟踪演练1在平面直角坐标系xOy中,设A是曲线C1:yax31(a0)与曲线C2:x2y2的一个公共点,若C1在A处的切线与C2在A处的切线互相垂直,则实数a的值是_热点二利用导数研究函数的单调性1f(x)0是f(x)为增函数的充分不必要条件,如函数f(x)x3在(,)上单调递增,但f(x)
4、0.2f(x)0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f(x)0时,则f(x)为常函数,函数不具有单调性例2(2015重庆)设函数f(x)(aR)(1)若f(x)在x0处取得极值,确定a的值,并求此时曲线yf(x)在点(1,f(1)处的切线方程;(2)若f(x)在3,)上为减函数,求a的取值范围思维升华利用导数研究函数单调性的一般步骤:(1)确定函数的定义域(2)求导函数f(x)(3)若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f(x)0或f(x)0,右侧f(x)0,则f(x0)为函数f(x)的极大值;若在x0附近左侧f(x)0,则f(x0)为函数f(
5、x)的极小值2设函数yf(x)在a,b上连续,在(a,b)内可导,则f(x)在a,b上必有最大值和最小值且在极值点或端点处取得例3设函数f(x)px2ln x,g(x),其中p0.(1)若f(x)在其定义域内是单调增函数,求实数p的取值范围;(2)若在1,e上存在点x0,使得f(x0)g(x0)成立,求实数p的取值范围;(3)若在1,e上存在点x1,x2,使得f(x1)g(x2)成立,求实数p的取值范围思维升华(1)求函数f(x)的极值,则先求方程f(x)0的根,再检查f(x)在方程根的左右函数值的符号(2)若已知极值大小或存在情况,则转化为已知方程f(x)0根的大小或存在情况来求解(3)求函
6、数f(x)在闭区间a,b的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值跟踪演练3已知函数f(x)ln xaxa2x2(a0)(1)若x1是函数yf(x)的极值点,求a的值;(2)若f(x)0”是“f(x)在R上单调递增”的_条件5已知aln x对任意x,2恒成立,则a的最大值为_6(2015陕西)函数yxex在其极值点处的切线方程为_7若函数f(x)在x(2,)上单调递减,则实数a的取值范围是_8已知函数f(x)4ln xax26xb(a,b为常数),且x2为f(x)的一个极值点,则a的值为_9(2015重庆)已知函数f(x)ax3
7、x2(aR)在x处取得极值(1)确定a的值;(2)若g(x)f(x)ex,讨论g(x)的单调性10已知函数f(x)ln x,x1,3(1)求f(x)的最大值与最小值;(2)若f(x)3)上的最小值;(3)若对x2,kf(x)g(x)恒成立,求实数k的取值范围学生用书答案精析第3讲导数及其应用高考真题体验1(,1)(0,1)解析因为f(x)(xR)为奇函数,f(1)0,所以f(1)f(1)0.当x0时,令g(x),则g(x)为偶函数,且g(1)g(1)0.则当x0时,g(x)0,故g(x)在(0,)上为减函数,在(,0)上为增函数所以在(0,)上,当0x1时,g(x)g(1)00f(x)0;在(
8、,0)上,当x1时,g(x)g(1)00f(x)0.综上,得使得f(x)0成立的x的取值范围是(,1)(0,1)21,)解析由于f(x)k,f(x)kxln x在区间(1,)单调递增f(x)k0在(1,)上恒成立由于k,而00,(x)在(0,1上递增,(x)max(1)6,a6.当x2,0)时,a,amin.仍设(x),(x).当x2,1)时,(x)0.当x1时,(x)有极小值,即为最小值而(x)min(1)2,a2.综上知6a2.4解析f(x)3ax26x,当a3时,f(x)9x26x3x(3x2),则当x(,0)时,f(x)0;x(0,)时,f(x)0,注意f(0)1,f()0,则f(x)
9、的大致图象如图1所示不符合题意,排除.图1当a时,f(x)4x26x2x(2x3),则当x(,)时,f(x)0,x(0,)时,f(x)0),得a4.例2解(1)对f(x)求导得f(x),因为f(x)在x0处取得极值,所以f(0)0,即a0.当a0时,f(x),f(x),故f(1),f(1),从而f(x)在点(1,f(1)处的切线方程为y(x1),化简得3xey0.(2)由(1)知f(x).令g(x)3x2(6a)xa,由g(x)0,解得x1,x2.当xx1时,g(x)0,即f(x)0,故f(x)为减函数;当x1xx2时,g(x)0,即f(x)0,故f(x)为增函数;当xx2时,g(x)0,即f
10、(x)0,故f(x)为减函数由f(x)在3,)上为减函数,知x23,解得a,故a的取值范围为.跟踪演练2(1)(0,1(2)(,)解析(1)由题意知,函数的定义域为(0,),又由f(x)x0,解得00,解得a.所以a的取值范围是(,)例3解(1)f(x)的定义域为(0,),f(x)p.由条件知f(x)0在(0,)内恒成立,即p恒成立而1,当x1时等号成立,即的最大值为1,所以p1,即实数p的取值范围是1,)(2)设h(x)f(x)g(x),则已知等价于h(x)0在1,e上有解,即等价于h(x)在1,e上的最大值大于0.因为h(x)p0,所以h(x)在1,e上是增函数,所以h(x)maxh(e)
11、pe40,解得p.所以实数p的取值范围是(,)(3)已知条件等价于f(x)maxg(x)min.当p1时,由(1)知f(x)在1,e上是增函数,所以f(x)maxf(e)pe2.当0p0.综上可知,应用pe22,解得p.所以实数p的取值范围是(,)跟踪演练3解(1)函数的定义域为(0,),f(x).因为x1是函数yf(x)的极值点,所以f(1)1a2a20,解得a(舍去)或a1.经检验,当a1时,x1是函数yf(x)的极值点,所以a1.(2)当a0时,f(x)ln x,显然在定义域内不满足f(x)0时,令f(x)0,得x1(舍去),x2,所以f(x),f(x)的变化情况如下表:x(0,)(,)
12、f(x)0f(x)极大值所以f(x)maxf()ln 1.综上可得a的取值范围是(1,)高考押题精练1.解析yf(x)ln x的定义域为(0,),设切点为(x0,y0),则切线斜率kf(x0).切线方程为yy0(xx0),又切线过点(0,0),代入切线方程得y01,则x0e,k.2解析由题意知f(x)3x22axb,f(1)0,f(1)10,即解得或经检验满足题意,故.32解析函数f(x)x2ax3在(0,1)上为减函数,1,得a2.又g(x)2x,依题意g(x)0在x(1,2)上恒成立,得2x2a在x(1,2)上恒成立,有a2,a2.4.解析由于f(x)10,因此函数f(x)在0,1上单调递
13、增,所以x0,1时,f(x)minf(0)1.根据题意可知存在x1,2,使得g(x)x22ax41,即x22ax50,即a能成立,令h(x),则要使ah(x)在x1,2能成立,只需使ah(x)min,又函数h(x)在x1,2上单调递减,所以h(x)minh(2),故只需a.二轮专题强化练答案精析第3讲导数及其应用1解析根据f(x)的符号,f(x)图象应该是先下降后上升,最后下降,错误;从适合f(x)0的点知错;正确2xy30解析f(x),则f(1)1,故该切线方程为y(2)x1,即xy30.3(,3,)解析f(x)x22ax5,当f(x)在1,3上单调递减时,由得a3;当f(x)在1,3上单调
14、递增时,f(x)0恒成立,则有4a2450或或得a,)综上a的取值范围为(,3,)4充分不必要解析f(x)x2a,当a0时,f(x)0恒成立,故“a0”是“f(x)在R上单调递增”的充分不必要条件50解析令f(x)ln x,则f(x),当x,1)时,f(x)0,f(x)在,1上单调递减,在1,2上单调递增,f(x)minf(1)0,a0.6y解析设yf(x)xex,令yexxexex(1x)0,得x1.当x1时,y0;当x1时,y0,故x1为函数f(x)的极值点,切线斜率为0,又f(1)e1,故切点坐标为,切线方程为y0(x1),即y.7a解析f(x),令f(x)0,即2a10,解得a.81解
15、析由题意知,函数f(x)的定义域为(0,),f(x)2ax6,f(2)24a60,即a1.9解(1)对f(x)求导得f(x)3ax22x,因为f(x)在x处取得极值,所以f0,即3a20,解得a.(2)由(1)得g(x)ex,故g(x)exexexx(x1)(x4)ex.令g(x)0,解得x0,x1或x4.当x4时,g(x)0,故g(x)为减函数;当4x1时,g(x)0,故g(x)为增函数;当1x0时,g(x)0,故g(x)为减函数;当x0时,g(x)0,故g(x)为增函数综上知g(x)在(,4)和(1,0)内为减函数,在(4,1)和(0,)内为增函数10解(1)函数f(x)ln x,f(x)
16、,令f(x)0得x2,x1,3,当1x2时,f(x)0;当2x0;f(x)在(1,2)上是单调减函数,在(2,3)上是单调增函数,f(x)在x2处取得极小值f(2)ln 2;又f(1),f(3)ln 3,ln 31,(ln 3)ln 310,f(1)f(3),x1时f(x)的最大值为,x2时函数取得最小值为ln 2.(2)由(1)知当x1,3时,f(x),故对任意x1,3,f(x)对任意t0,2恒成立,即at恒成立,记g(t)at,t0,2解得a0),问题转化为a在(0,)上有两个实数解设g(x),则g(x).所以g(x)在(0,1)上单调递增,在(1,)上单调递减,g(x)在x1处取得极大值也是最大值,即g(x)maxg(1).注意g()0,当x1时,g(x)0,则g(x)的大致图象如图所示由图象易知0a0得x2,由f(x)0得x3,t12.当3t0得ex,xln;由F(x)0得xln,F(x)在(,ln)单调递减,在ln,)单调递增当lne2时,F(x)在2,)单调递增,F(x)minF(2)2ke22(e2k)2,即1k0,满足F(x)min0.综上所述,满足题意的k的取值范围为1,e2