1、第3讲立体几何中的向量方法考情解读1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明,常出现在解答题的第(1)问中,考查空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间角(主要是线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题1直线与平面、平面与平面的平行与垂直的向量方法设直线l的方向向量为a(a1,b1,c1)平面、的法向量分别为(a2,b2,c2),v(a3,
2、b3,c3)(以下相同)(1)线面平行laa0a1a2b1b2c1c20.(2)线面垂直laaka1ka2,b1kb2,c1kc2.(3)面面平行vva2a3,b2b3,c2c3.(4)面面垂直vv0a2a3b2b3c2c30.2直线与直线、直线与平面、平面与平面的夹角计算设直线l,m的方向向量分别为a(a1,b1,c1),b(a2,b2,c2)平面、的法向量分别为(a3,b3,c3),v(a4,b4,c4)(以下相同)(1)线线夹角设l,m的夹角为(0),则cos .(2)线面夹角设直线l与平面的夹角为(0),则sin |cosa,|.(3)面面夹角设半平面、的夹角为(0),则|cos |c
3、os,v|.提醒求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析3求空间距离直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P到平面的距离:d(其中n为的法向量,M为内任一点).热点一利用向量证明平行与垂直例1如图,在直三棱柱ADEBCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点运用向量方法证明:(1)OM平面BCF;(2)平面MDF平面EFCD.思维启迪从A点出发的三条直线AB、AD,AE两两垂直,可建立空间直角坐标系证明方法一由题意,得AB,AD,AE两两垂直,以A为原点建立如图所示的空间直角坐标系设正方形边长为1,则A(0
4、,0,0),B(1,0,0),C(1,1,0),D(0,1,0),F(1,0,1),M,O.(1),(1,0,0),0, .棱柱ADEBCF是直三棱柱,AB平面BCF,是平面BCF的一个法向量,且OM平面BCF,OM平面BCF.(2)设平面MDF与平面EFCD的一个法向量分别为n1(x1,y1,z1),n2(x2,y2,z2)(1,1,1),(1,0,0),由n1n10,得解得令x11,则n1.同理可得n2(0,1,1)n1n20,平面MDF平面EFCD.方法二(1)()().向量与向量,共面,又OM平面BCF,OM平面BCF.(2)由题意知,BF,BC,BA两两垂直,0,()220.OMCD
5、,OMFC,又CDFCC,OM平面EFCD.又OM平面MDF,平面MDF平面EFCD.思维升华(1)要证明线面平行,只需证明向量与平面BCF的法向量垂直;另一个思路则是根据共面向量定理证明向量与,共面(2)要证明面面垂直,只要证明这两个平面的法向量互相垂直;也可根据面面垂直的判定定理证明直线OM垂直于平面EFCD,即证OM垂直于平面EFCD内的两条相交直线,从而转化为证明向量与向量、垂直如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,PAAB2,BAD60,E是PA的中点(1)求证:直线PC平面BDE;(2)求证:BDPC;证明设ACBDO.因为BAD60,AB2,底面ABC
6、D为菱形,所以BO1,AOCO,ACBD.如图,以O为坐标原点,以OB,OC所在直线分别为x轴,y轴,过点O且平行于PA的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0),D(1,0,0),E(0,1)(1)设平面BDE的法向量为n1(x1,y1,z1),因为(1,1),(2,0,0),由得令z1,得y11,所以n1(0,1,)又(0,2,2),所以n10220,即n1,又PC平面BDE,所以PC平面BDE.(2)因为(0,2,2),(2,0,0),所以0.故BDPC.热点二利用向量求空间角例2如图,五面体中,四边形ABCD是矩形,ABEF,
7、AD平面ABEF,且AD1,ABEF2,AFBE2,P、Q分别为AE、BD的中点(1)求证:PQ平面BCE;(2)求二面角ADFE的余弦值思维启迪(1)易知PQ为ACE的中位线;(2)根据AD平面ABEF构建空间直角坐标系(1)证明连接AC,四边形ABCD是矩形,且Q为BD的中点,Q为AC的中点,又在AEC中,P为AE的中点,PQEC,EC面BCE,PQ面BCE,PQ平面BCE.(2)解如图,取EF的中点M,则AFAM,以A为坐标原点,以AM、AF、AD所在直线分别为x,y,z轴建立空间直角坐标系则A(0,0,0),D(0,0,1),M(2,0,0),F(0,2,0)可得(2,0,0),(2,
8、2,0),(0,2,1)设平面DEF的法向量为n(x,y,z),则.故,即.令x1,则y1,z2,故n(1,1,2)是平面DEF的一个法向量AM面ADF,为平面ADF的一个法向量cosn,.由图可知所求二面角为锐角,二面角ADFE的余弦值为.思维升华(1)运用空间向量坐标运算求空间角的一般步骤:建立恰当的空间直角坐标系;求出相关点的坐标;写出向量坐标;结合公式进行论证、计算;转化为几何结论(2)求空间角注意:两条异面直线所成的角不一定是直线的方向向量的夹角,即cos |cos |.两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角直线和平面所成的角的正弦值等于平面法向量与直线
9、方向向量夹角的余弦值的绝对值,即注意函数名称的变化如图,已知三棱锥OABC的侧棱OA,OB,OC两两垂直,且OA1,OBOC2,E是OC的中点(1)求O点到面ABC的距离;(2)求二面角EABC的正弦值解(1)以O为原点,OB、OC、OA所在直线分别为x、y、z轴建立空间直角坐标系,如图则有A(0,0,1)、B(2,0,0)、C(0,2,0)、E(0,1,0)设平面ABC的法向量为n1(x,y,z),则由n1知:n12xz0;由n1知:n12yz0.取n1(1,1,2),则点O到面ABC的距离为d.(2)因为(2,1,0),(2,0,1)设平面EAB的法向量为n(x,y,z),则由n知:n2x
10、z0;由n知:n2xy0.取n(1,2,2)由(1)知平面ABC的一个法向量为n1(1,1,2)则cosn,n1.结合图形可知,二面角EABC的正弦值是.热点三利用空间向量求解探索性问题例3如图,在直三棱柱ABCA1B1C1中,ABBC2AA1,ABC90,D是BC的中点(1)求证:A1B平面ADC1;(2)求二面角C1ADC的余弦值;(3)试问线段A1B1上是否存在点E,使AE与DC1成60角?若存在,确定E点位置;若不存在,说明理由(1)证明连接A1C,交AC1于点O,连接OD.由ABCA1B1C1是直三棱柱,得四边形ACC1A1为矩形,O为A1C的中点又D为BC的中点,所以OD为A1BC
11、的中位线,所以A1BOD.因为OD平面ADC1,A1B平面ADC1,所以A1B平面ADC1.(2)解由ABCA1B1C1是直三棱柱,且ABC90,得BA,BC,BB1两两垂直以BC,BA,BB1所在直线分别为x,y,z轴,建立如图所示的空间直角坐标系Bxyz.设BA2,则B(0,0,0),C(2,0,0),A(0,2,0),C1(2,0,1),D(1,0,0),所以(1,2,0),1(2,2,1)设平面ADC1的法向量为n(x,y,z),则有所以取y1,得n(2,1,2)易知平面ADC的一个法向量为v(0,0,1)所以cosn,v.因为二面角C1ADC是锐二面角,所以二面角C1ADC的余弦值为
12、.(3)解假设存在满足条件的点E.因为点E在线段A1B1上,A1(0,2,1),B1(0,0,1),故可设E(0,1),其中02.所以(0,2,1),1(1,0,1)因为AE与DC1成60角,所以|cos,1|,即,解得1或3(舍去)所以当点E为线段A1B1的中点时,AE与DC1成60角思维升华空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法 如图,在三棱锥PABC中
13、,ACBC2,ACB90,APBPAB,PCAC,点D为BC的中点(1)求二面角APDB的余弦值;(2)在直线AB上是否存在点M,使得PM与平面PAD所成角的正弦值为,若存在,求出点M的位置;若不存在,说明理由解(1)ACBC,PAPB,PCPC,PCAPCB,PCAPCB,PCAC,PCCB,又ACCBC,PC平面ACB,且PC,CA,CB两两垂直,故以C为坐标原点,分别以CB,CA,CP所在直线为x,y,z轴建立空间直角坐标系,则C(0,0,0),A(0,2,0),D(1,0,0),P(0,0,2),(1,2,0),(1,0,2),设平面PAD的一个法向量为n(x,y,z),取n(2,1,
14、1),平面PDB的一个法向量为(0,2,0),cosn,设二面角APDB的平面角为,且为钝角,cos ,二面角APDB的余弦值为.(2)方法一存在,M是AB的中点或A是MB的中点设M(x,2x,0) (xR),(x,2x,2),|cos,n|,解得x1或x2,M(1,1,0)或M(2,4,0),在直线AB上存在点M,且当M是AB的中点或A是MB的中点时,使得PM与平面PAD所成角的正弦值为.方法二存在,M是AB的中点或A是MB的中点设,则(2,2,0)(2,2,0) (R),(2,22,2),|cos,n|.解得或1.M是AB的中点或A是MB的中点在直线AB上存在点M,且当M是AB的中点或A是
15、MB的中点时,使得PM与平面PAD所成角的正弦值为.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性提醒三点:(1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值(2)求二面角除利用法向量外,还可以按照二面角的平面角的定义和空间任意两个向量都是共面向量的知识,我们只要是在二面角的
16、两个半平面内分别作和二面角的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小如图所示(3)对于空间任意一点O和不共线的三点A,B,C,且有xyz(x,y,zR),四点P,A,B,C共面的充要条件是xyz1.空间一点P位于平面MAB内存在有序实数对x,y,使xy,或对空间任一定点O,有序实数对x,y,使xy.真题感悟(2014北京)如图,正方形AMDE的边长为2,B,C分别为AM,MD的中点,在五棱锥PABCDE中,F为棱PE的中点,平面ABF与棱PD,PC分别交于点G,H.(1)求证:ABFG;(2)若PA底面ABCDE,且PAAE,求直线
17、BC与平面ABF所成角的大小,并求线段PH的长(1)证明在正方形AMDE中,因为B是AM的中点,所以ABDE.又因为AB平面PDE,DE平面PDE,所以AB平面PDE.因为AB平面ABF,且平面ABF平面PDEFG,所以ABFG.(2)解因为PA底面ABCDE,所以PAAB,PAAE.如图建立空间直角坐标系Axyz,则A(0,0,0),B(1,0,0),C(2,1,0),P(0,0,2),F(0,1,1),(1,1,0)设平面ABF的一个法向量为n(x,y,z),则即令z1,则y1,所以n(0,1,1)设直线BC与平面ABF所成角为,则sin |cosn,|.因此直线BC与平面ABF所成角的大
18、小为,设点H的坐标为(u,v,w)因为点H在棱PC上,所以可设(00),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,则即可取n1(,1,)又n2(1,0,0)为平面DAE的法向量,由题设|cosn1,n2|,即 ,解得m.因为E为PD的中点,所以三棱锥EACD的高为,三棱锥EACD的体积V.13如图所示,在四棱锥PABCD中,侧面PCD底面ABCD,PDCD,E为PC中点,底面ABCD是直角梯形,ABCD,ADC90,ABADPD1,CD2.(1)求证:BE平面PAD;(2)求证:平面PBC平面PBD;(3)设Q为棱PC上一点,试确定的值使得二面角QBDP为45.(1)
19、证明令PD中点为F,连接EF,如图点E,F分别是PC,PD的中点,EF綊CD,EF綊AB.四边形FABE为平行四边形BEAF,AF平面PAD,BE平面PAD.BE平面PAD.(2)证明在梯形ABCD中,过点B作BHCD于H,如(1)图在BCH中,BHCH1,BCH45.又在DAB中,ADAB1,ADB45,BDC45,DBC90,BCBD.面PCD面ABCD,面PCD面ABCDCD,PDCD,PD面PCD,PD面ABCD,PDBC,BDPDD,BD平面PBD,PD平面PBD,BC平面PBD,又BC平面PBC,平面PBC平面PBD.(3)解以D为原点,DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则P(0,0,1),C(0,2,0),A(1,0,0),B(1,1,0)令Q(x0,y0,z0),Q(0,2,1)由(2)知,BC平面PBD,是平面PBD的一个法向量n(1,1,0)设面QBD的一个法向量为m(x,y,z),则即令y1,得m(1,1,)二面角QBDP为45,cosm,n,解得1.Q在PC上,01,1为所求