ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:13.50KB ,
资源ID:541052      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-541052-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学:知其所以然 才能举一反三.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学:知其所以然 才能举一反三.doc

1、数学:知其所以然 才能举一反三上篇文章我们提到推导过程对数学方法和处理方式的运用,这是当然是解题必备,另外,如果细心的同学就会注意到,通过这个推导过程,我们还能得到一元二次方程中一个非常重要的式子根的判别式。回到之前的配方式,(x+b/2a)2=(b2-4ac)/(4a2)。在实数域内,等式左边表示是一个实数的平方,我们都知道一个实数的平方一定是一个非负数,但是等式右边关于系数a、b、c的式子算出来的数并不一定是非负数,如果是一个负数的话,该等式在实数域内是不可能成立的,意味着该方程无根;如果等式右边是零的话,就意味着x+b/2a只能为零,该方程只有一个根x=-b/2a(或者说两个相等的实数根

2、);若等式右边是一个正数,x+b/2a是可以等于两个不同的值的,即该方程有两个根。上述一直在讨论根的个数的问题,也就是一元二次方程的根的个数是需要由等式右边(b2-4ac)/(4a2)的正负来决定的。此时,又出现了另外一个问题,初中数学中根的判别式并不是这个分式,而只有该分式的分子,即判别式=b2-4ac,这又是为何呢?不难发现,我们得到的这个分式的分母4a2在a不等于0的时候一定是大于零的数,因此整个分式的正负直接由其分子决定,即判别式只需等于b2-4ac即可判定一元二次方程根的个数。这就跟我们初中的记忆重叠在一起了,根的判别式b2-4ac大于零时,方程有两个不同的实数根;等于零时,方程有两

3、个相等的实数根;小于零时,方程无实数根。当然,这只是在实数域内讨论问题,若将数域扩充到复数域,这将意味着小于零的时候,方程是有两个虚根的。管综数学基础的考试数域是实数域,因此不需要考虑虚根的情况。不仅仅如此,我们知道了公式是怎么来的,知道它怎么用,还需要研究该公式能有什么样的变形,将其扩展,使其应用的更广泛。当方程有两个不相等的实数根时,如果对两根进行加法运算,将会得到一个很重要的数学式子,即两根之和=-b/a;另外还可以对其进行乘法运算,就得到另外一个重要式子即两根之积=c/a。这两个等式都在讨论根与系数的关系,也就是我们在初中学习的韦达定理。那我们就可以注意到,韦达定理是对两根进行求和、求

4、乘积的运算,其前提必定是方程必须有根,因此大前提就是用韦达定理,方程的判别式必须大于等于零。那么,在满足这个前提条件时,韦达定理有着怎样的应用呢?课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成

5、语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。韦达定理既是将方程的根和方程的系数结合在一起,那么在根与系数关系判定中就起到很大的作用。它的第一个应用就是求值问题,当已知条件是一个一元二次方程,所求代数式比较复杂,且是关于两根的,就可以将所求代数式转化为与两根之和、两根之积有关系的代数式,直接利用韦达定理整体带入求值即可;第二个应用就是根的正负问题了,在判别式大于等于零的前提下,利用两根之和、两根之积的正负来确定两根的正负,此方法有效避免了解分式不等式的繁琐步骤,大大提升解题速度。这也是管综数学基础考试中考微博查的重点之一。现在知道了方程的求根推导过

6、程,也知道了其变形式韦达定理是怎样得到的,就不必刻意去记忆此公式了。如果只是单纯记住公式的话,应用的灵活度方面将会有很大的局限性了。“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“

7、先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。总之,大家在学习数学知识时,不仅要知其然,更要知其所以然,对其来龙去脉了解清楚,在理解过程中不仅仅能达到记忆的目的,更能灵活应用,这才是数学的学习王道。其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1