ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:8.77MB ,
资源ID:537574      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-537574-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学苏教版选修2-3学案:1.3 组合 WORD版含解析.DOC)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学苏教版选修2-3学案:1.3 组合 WORD版含解析.DOC

1、1.3组合学习目标重点、难点1通过实例能理解组合的概念;2能利用计数原理推导组合数公式;3能理解组合数的有关性质;4能用组合数公式解决简单的实际问题.重点:排列与组合的区分,及组合数公式难点:排列与组合的区分,利用组合数公式解决简单的实际问题.1组合的概念一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合预习交流1如何区分排列问题和组合问题?提示:区分某一问题是排列问题还是组合问题,关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题;而交换任意两个元素的位置对结果没有影响,则是组合问题2组合数从n个不同元素中取出m(

2、mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C表示C.预习交流2如何理解和记忆组合数公式?提示:同排列数公式相类比,在排列数公式的基础上,分母再乘以m!.3组合数的性质性质1:CC,性质2:CCC.预习交流3如何理解和记忆组合数的性质?提示:从n个元素中取m个元素,就剩余(nm)个元素,故CC.从n1个元素中取m个元素记作C,可认为分作两类:第一类为含有某元素a的取法为C;第二类不含有此元素a,则为C,由分类计数原理知:CCC.在预习中,还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点一、组合问题判断下列问题是组合问题,还是排

3、列问题设集合Aa,b,c,d,则集合A的含3个元素的子集有多少个?一个班中有52人,任两个人握一次手,共握多少次手?4人去干5种不同的工作,每人干一种,有多少种分工方法?思路分析:交换两个元素的顺序,看结果是否有影响,如无影响则是组合问题解:因为集合中取出的元素具有“无序性”,故这是组合问题;因为两人握手是相互的,没有顺序之分,故这是组合问题;因为5种工作是不同的,一种分工方法就是从5种不同的工作中选出4种,按一定的顺序分配给4个人,它与顺序有关,故这是排列问题下列问题中,是组合问题的有_从a,b,c,d四名学生中选2名学生完成一件工作,有多少种不同的选法;从a,b,c,d四名学生中选2名学生

4、完成两件不同的工作,有多少种不同的选法;a,b,c,d四支足球队进行单循环赛,共需多少场比赛;a,b,c,d四支足球队争夺冠亚军,有多少种不同的结果答案:解析:2名学生完成的是同一件工作,没有顺序,是组合问题;2名学生完成两件不同的工作,有顺序,是排列问题;单循环比赛要求每两支球队之间只打一场比赛,没有顺序,是组合问题;冠亚军是有顺序的,是排列问题组合问题与顺序无关,而排列问题与顺序有关二、组合数公式及组合数的性质(1)计算CC;(2)已知CC,求n;(3)化简CCCC1.思路分析:先把组合数利用性质化简或利用组合数性质直接求解解:(1)CCCC2005 150.(2)由CC,知3n64n2或

5、3n6(4n2)18,解得n8或2.而3n618且4n218,即n4且nN*,n2.(3)CCCC11CCCCCCCCCCCCCCCCCCCC126.(1)CCCC_;(2)(CC)A_.答案:(1)329(2)解析:(1)原式CCCCCCCC1CC1C1329.(2)原式CACAA.利用组合数的性质解题时,要抓住公式的结构特征,应用时,可结合题目的特点,灵活运用公式变形,达到解题的目的三、组合知识的实际应用现有10名教师,其中男教师6名,女教师4名(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?思路分析:由于选出的教师不需

6、要考虑顺序,因此是组合问题第(1)小题选2名教师不考虑男女,实质上是从10个不同的元素中取出2个的组合问题,可用直接法求解第(2)小题必须选男、女教师各2名,才算完成所做的事,因此需要分两步进行,先从6名男教师中选2名,再从4名女教师中选2名解:(1)从10名教师中选2名参加会议的选法数,就是从10个不同元素中取出2个元素的组合数,即C45种(2)从6名男教师中选2名的选法有C,从4名女教师中选2名的选法有C种,根据分步乘法计数原理,因此共有不同的选法CC90种某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的不同选法有多少种?解:方法一:(直接法)至少1名女生当选可分为

7、两类:第一类:1名女生1名男生当选代表,有CC种方法,第二类:2名女生当选代表,有C种方法由分类加法计数原理,至少有1名女生当选的不同选法有CCC21324种方法二:(间接法)10名学生中选2名代表有C种选法,若2名代表全是男生有C种选法,所以至少有1名女生当选代表的选法有CC24种利用组合知识解决实际问题要注意:将已知条件中的元素的特征搞清,是用直接法还是间接法;要使用分类方法,要做到不重不漏;当问题的反面比较简单时,常用间接法解决1给出下面几个问题,其中是组合问题的有_某班选10名学生参加拔河比赛;由1,2,3,4选出两个数,构成平面向量a的坐标;由1,2,3,4选出两个数分别作为双曲线的

8、实轴和虚轴,焦点在x轴上的双曲线方程数;从正方体8个顶点中任取两个点构成的线段条数是多少?答案:解析:由组合的概念知是组合问题,与顺序无关,而是排列问题,与顺序有关2C2CC_.答案:161 700解析:原式CCCCCCCC161 700.3平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这几个点中的每三个点作圆,共可作_个圆答案:220解析:由题意知,可作C220个不同的圆4解方程:CCC.解:CCC,CCC,CC.由组合数的性质得x12x2或x12x216,解得x3(舍)或x5.x5.5平面内有10个点,其中任何3点不共线,以其中任意2点为端点,试求:(1)线段有多少条?(2)有向线段有多少条?解:(1)所求线段的条数,即为从10个元素中任取2个元素的组合,共有C45条不同的线段(2)所求有向线段的条数,即为从10个元素中任取2个元素的排列,共有A10990条不同的有向线段用精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来,并进行识记知识精华技能要领

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1