ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:160KB ,
资源ID:537252      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-537252-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学苏教版必修4知识导航 3.3几个三角恒等式 WORD版含解析.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学苏教版必修4知识导航 3.3几个三角恒等式 WORD版含解析.doc

1、3.3 几个三角恒等式知识梳理 一、万能代换公式:sin=;cos=;tan=.二、关于和差化积、积化和差公式的推导1.积化和差公式推导 课本仅推了第一个,下面给出公式的全部推导过程:由于sin(+)=sincos+cossin;sin(-)=sincos-cossin;cos(+)=coscos-sinsin;cos(-)=coscos+sinsin.+,得sincos=sin(+)+sin(-);-,得cossin=sin(+)-sin(-);+,得coscos=cos(+)+cos(-);-,得sinsin=-cos(+)-cos(-).2.和差化积公式的推导在积化和差公式中,如果“从右

2、往左”看就是和差化积.令+=,-=,则=,=,代入第一个积化和差公式,可得sin+sin=2sincos.同理,可得sin-sin=2cossin,cos+cos=2coscos,cos-cos=-2sinsin.知识导学 要学好本节内容,可以以一般的数学(代数)变换思想为指导,加强对三角函数式特点的观察,注意体会三角恒等变换的特殊性.关于和差化积、积化和差,万能代换公式这三组公式要了解它们的推导过程,体会其中用到的换元与方程的思想.课本上虽然不要求记忆,但如果能记住且会用,在解某些题目时将会少绕弯路,起到事半功倍的效果.半角公式虽然不要求记忆,但要熟悉公式的推导和使用,在解题过程中能熟练地进

3、行变形,应用它们可以起到降幂或升幂的重要作用.疑难突破1.代数式变换与三角变换有何异同?剖析:三角恒等变换与代数恒等变换、圆的几何性质等都有紧密联系,推导两角差的余弦公式的过程比较集中地反映了这种联系,从中体现了丰富的数学思想.从数学变换的角度看,三角恒等变换与代数恒等变换既有相同之处又有各自特点.相同之处在于它们都是运用一定的数学工具对相应的数学式子作“只变其形不变其质”的数学运算,对其结构形式进行变换.由于三角函数式的差异不仅表现在其结构形式上,而且还表现在角及其函数类型上,因此三角恒等变换常常需要先考虑式子中各个角之间的关系,然后以这种关系为依据来选择适当的三角公式进行变换,这是三角恒等

4、变换的主要特点.2.如何确定半角的正弦、余弦、正切的无理式前的符号?剖析:(1)若给出角是某一象限角时,可根据下表决定符号:sincostan第一象限一、三象限+、-+、-+第二象限一、三象限+、-+、-+第三象限二、四象限+、-、+-第四象限二、四象限+、-、+- (2)若给出的范围时,可先求出的范围,再根据的范围确定符号.(3)若没有给出决定符号的条件时,则要保留正,负两个符号.3.半角公式的推导和使用.tan还可以用sin、cos的有理表达式给出吗?半角仅仅是2与之间的关系吗?剖析:(1)半角公式虽然不要求记忆,但要熟悉公式的推导和使用,在解题过程中能熟练地进行变形,特别是sin2=与c

5、os2=.应用它们可以起到降幂或升幂的重要作用,在三角函数的化简、求值、证明过程中有着举足轻重的地位.(2)课本中半角公式给出了无理表达式:sin=,cos=,tan=.其中tan还可以用sin、cos的有理表达式给出:tan=,推导如下:tan=或tan=,即tan=.这两个公式将tan表示成了sin、cos的有理表达式.使用它们在一些计算或化简过程中可避免开方和对根号前符号的判断,非常方便,如计算tan可直接化为-1,但应注意到tan=的适用范围是k(kZ,而tan=与tan=的适用范围是(2k+1)(kZ).(3)对于半角要有广义上的理解如:4=8,3=6a,=3,=,=,又如:=,=,=等.则有sin2=,cos2=,tan2=等.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1