1、第1课时 二次根式的乘法1掌握二次根式的乘法运算法则;(重点)2会进行二次根式的乘法运算(重点、难点)一、情境导入小颖家有一块长方形菜地,长m,宽m,那么这个长方形菜地的面积是多少?二、合作探究探究点一:二次根式的乘法法则成立的条件 式子成立的条件是()Ax2 Bx1C1x2 D1x2解析:根据题意得解得1x2.故选C.方法总结:运用二次根式的乘法法则:(a0,b0),必须注意被开方数是非负数这一条件探究点二:二次根式的乘法【类型一】 二次根式的乘法运算 计算:(1);(2)9();(3)2();(4)2a()(a0,b0)解析:第(1)小题直接按二次根式的乘法法则进行计算,第(2),(3),
2、(4)小题把二次根式前的系数与系数相乘,被开方数与被开方数相乘解:(1)原式;(2) 原式(9)27;(3)原式(2);(4) 原式2a16a3b.方法总结:二次根式与二次根式相乘时,可类比单项式与单项式相乘,把系数与系数相乘,被开方数与被开方数相乘最后结果要化为最简二次根式,计算时要注意积的符号变式训练:见学练优本课时练习“课堂达标训练”第4题【类型二】 逆用性质3(即,a0,b0)进行化简 化简:(1);(2);(3)(a0,b0)解析:利用积的算术平方根的性质,把它们化为几个二次根式的积,(2)小题中先确定符号解:(1)140.57;(2);(3)15a3b.方法总结:利用积的算术平方根
3、的性质进行计算或化简,其实质就是把被开方数中的完全平方数或偶次方进行开平方计算,要注意的是,如果被开方数是几个负数的积,先要把符号进行转化,如(2)小题【类型三】 二次根式的乘法的应用 小明的爸爸做了一个长为cm,宽为cm的矩形木板,还想做一个与它面积相等的圆形木板,请你帮他计算一下这个圆的半径(结果保留根号)解析:根据“矩形的面积长宽”“圆的面积半径的平方”进行计算解:设圆的半径为rcm.因为矩形木板的面积为168(cm)2,所以r2168,r2(r2舍去)答:这个圆的半径为2cm.方法总结:把实际问题转化为数学问题,列出相应的式子进行计算,体现了转化思想三、板书设计本节课学习了二次根式的乘法和积的算术平方根的性质,两者是可逆的,它们成立的条件都是被开方数为非负数在教学中通过情境引入激发学生的学习兴趣,让学生自主探究二次根式的乘法法则,鼓励学生运用法则进行二次根式的乘法运算。