ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:443KB ,
资源ID:536747      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-536747-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2016版《名师金典》数学理一轮复习三年高考真题(2012-2014)分类汇编:2014年 考点28 二元一次不等式(组)与简单的线性规划问题 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2016版《名师金典》数学理一轮复习三年高考真题(2012-2014)分类汇编:2014年 考点28 二元一次不等式(组)与简单的线性规划问题 .doc

1、考点28 二元一次不等式(组)与简单的线性规划问题一、选择题1. (2014湖北高考文科T4)若变量x,y满足约束条件则2x+y的最大值是()A.2B.4C.7D.8【解题提示】根据已知的约束条件画出满足约束条件的可行域,再用角点法,求出目标函数的最大值.【解析】选C. 满足约束条件的可行域如下图中阴影部分所示:目标函数z=2x+y,即y=-2x+z,显然,当直线经过点B时z的值最大,最大值为7.2.(2014广东高考文科T4)若变量x,y满足约束条件则z=2x+y的最大值等于()A.7 B.8 C.10 D.11【解题提示】画出可行域,标出边界点,目标函数对应动直线的斜率为-2.【解析】选C

2、.作出可行域OABCD是34的矩形去掉一个12的直角三角形,其中B(2,3),C(4,2),所以当动直线z=2x+y经过点C(4,2)时取得最大值10.3.(2014广东高考理科)若变量x,y满足约束条件且z=2x+y的最大值和最小值分别为m和n,则m-n=()A.5B.6C.7D.8【解题提示】画出可行域,标出边界点,目标函数对应动直线的斜率为-2.【解析】选B.如图,可行域是以A,B(-1,-1),C(2,-1)为顶点的等腰直角三角形,所以当动直线z=2x+y经过点C(2,-1)时取得最大值3,经过点B(-1,-1)时取得最小值-3,所以m-n=6.4.(2014福建高考文科11)11已知

3、圆,设平面区域,若圆心,且圆C与x轴相切,则的最大值为 ( )【解题指南】画出可行域,发现最优解【解析】由圆C 与x 轴相切可知,b=1又圆心C(a,b)在平面区域(如图2)内,由,解得;由,解得故所以当时,取最大值为375. (2014山东高考理科9)已知满足约束条件当目标函数在该约束条件下取到最小值时,的最小值为( )A、5 B、4 C、 D、2【解题指南】 本题考查了简单的线性规划问题,再利用两点间距离公式的几何意义求解.【解析】选B.解方程组求得交点为,则,的最小值即为在直线上找一点使得它到原点的距离平方最小.即求点到直线的距离的平方为.6. (2014山东高考文科10)与(2014山

4、东高考理科9)相同已知满足约束条件当目标函数在该约束条件下取到最小值时,的最小值为( )A、5 B、4 C、 D、2【解题指南】 本题考查了简单的线性规划问题,再利用两点间距离公式的几何意义求解.【解析】选B.解方程组求得交点为,则,的最小值即为在直线上找一点使得它到原点的距离平方最小.即求点到直线的距离的平方为.7. (2014天津高考文科2同2014天津高考理科2)设变量满足约束条件则目标函数的最小值为( )A. 2 B. 3 C. 4 D. 5【解析】选B. 由得。作出可行域如图,A平移直线,由图象可知当直线经过点A时,直线的截距最小,此时最小,由,得,即代入,得. 8.(2014安徽高

5、考理科5)满足约束条件,若取得最大值的最优解不唯一,则实数的值为( )A, B. C.2或1 D.【解题提示】 画出线性约束条件的图像,数形结合判断。【解析】选D.由线性约束条件可得其图象如图所示,由图象可知直线经过AB或AC时取得最大值的最优解不唯一,此时a=2或-19. (2014新课标全国卷高考文科数学T9) 设x,y满足约束条件则z=x+2y的最大值为()A.8 B.7C.2 D.1【解题提示】结合约束条件,画出可行域,然后将目标函数化为斜截式,平移得最大值.【解析】选B.画可行区域知为三角形,可以代值.两两求解,得三点坐标(1,0),(3,2),(0,1).代入z=x+2y,则最大值

6、为7.故选B.10. (2014新课标全国卷高考理科数学T9)设x,y满足约束条件则z=2x-y的最大值为 ()A.10B.8C.3D.2【解题提示】结合约束条件,画出可行域,然后将目标函数化为斜截式,平移得最大值.【解析】选B.画出区域,可知区域为三角形,经比较斜率,可知目标函数z=2x-y在两条直线x-3y+1=0与x+y-7=0的交点(5,2)处,取得最大值z=8.故选B.二、填空题1 (2014湖南高考理科14)若变量满足约束条件,且的最小值为6,则 【解题提示】画出可行域,把最值点带入解方程。【解析】如图,画出可行域,当运动到过点时,目标函数取得最小值-6,所以.答案:2. (201

7、4 湖南高考文科13)若变量满足约束条件,则的最大值为_.【解题提示】画出可行域,把最值点带入求解。【解析】如图,画出可行域,当运动到过点时,目标函数取得最小值7。答案:73.(2014福建高考理科11)若变量满足约束条件则的最小值为_【解题指南】先画好可行域,对于线性规划问题,可以考虑直接将可行域的几个端点坐标直接代入计算。【解析】画出可行域,三个端点分别为,将坐标代入,可得【答案】14. (2014浙江高考文科12)若实数满足,则的取值范围是_;【解析】作出不等式组所表示的区域,如图所示:令,解方程组 得 , 解方程组 得 平移直线,经过点使得取最大值,即,当直线经过点B时,取最小值,即,

8、所以的取值范围是.答案:5.(2014浙江高考理科13)当实数,满足时,恒成立,则实数的取值范围是_.【解析】作出不等式组所表示的区域,由得,由图可知,且在点取得最小值,在点取得最大值,所以,故的取值范围为答案:6. (2014辽宁高考文科1)已知满足约束条件则目标函数的最大值为_.【解析】画出约束条件对应的平面区域,如图,将目标函数化为,显然直线过点时,目标函数取得最大值,.答案:【误区警示】避免将二元一次不等式表示的区域搞错,弄清楚直线的斜率的大小与倾斜程度的关系7. (2014浙江高考文科12)若实数满足,则的取值范围是_;【解析】作出不等式组所表示的区域,如图所示:令,解方程组得,解方

9、程组得平移直线,经过点使得取最大值,即,当直线经过点B时,取最小值,即,所以的取值范围是.答案:8.(2014安徽高考文科13)不等式组表示的平面区域的面积为_【解题提示】正确画出平面区域的可行域是一个三角形,再数形结合计算面积。【解析】如图所示可得点A(0,2),B(2,0),C(8,-2),根据图像计算可得。答案: 4三、解答题1.(2014陕西高考文科T18)(本小题满分12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC三边围成的区域(含边界)上,且=m+n.(m,nR).(1)若m=n=,求.(2)用x,y表示m-n,并求m-n的最大值

10、.【解题指南】(1)先利用点的坐标求得向量坐标,代入已知关系式,再利用向量模的公式解得所求.(2)利用已知转化求得m-n与x,y的关系,再利用平面直角坐标系中简单的线性规划问题求其最值.【解析】(1)因为m=n=,=(1,2),=(2,1), 所以=+=(1,2)+(2,1)=(2,2),所以|=2.(2)因为=m+n, 所以(x,y)=(m+2n,2m+n), 所以两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,2)时,t取得最大值1,故m-n的最大值为1.2.(2014陕西高考理科T18)(本小题满分12分)在直角坐标系xOy中,已知点A(1,1),B(2,3

11、),C(3,2),点P(x,y)在ABC三边围成的区域(含边界)上.(1)若+=0,求.(2)设=m+n(m,nR),用x,y表示m-n,并求m-n的最大值.【解题指南】(1)先利用点的坐标求得向量坐标,代入已知关系式得点P坐标,再利用向量模的公式解得所求.(2)利用已知转化求得m-n与x,y的关系,再利用平面直角坐标系中简单的线性规划问题求其最值.【解析】(1)因为+=0,又+=(1-x,1-y)+(2-x,3-y)+(3-x,2-y)=(6-3x,6-3y),所以解得x=2,y=2, 即=(2,2),故|=2.(2)因为=m+n, 所以(x,y)=(m+2n,2m+n), 所以两式相减得,m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,2)时,t取得最大值1, 故m-n的最大值为1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3