1、数学直线与圆方程练习题高三一.基础训练:1.点在直线上,为原点,则的最小值是 ( )22.过点,且横纵截距的绝对值相等的直线共有 ( )1条 2条 3条 4条3.圆与轴交于两点,圆心为,若,则( )84.若圆上有且只有两个点到直线距离等于,则半径取值范围是 ( )5.直线与直线的交点为,则过点的直线方程是_。6.已知满足,则的最大值为_,最小值为_。二.例题分析:例1.过点作直线交轴,轴的正向于两点;(为坐标原点)(1)当面积为个平方单位时,求直线的方程;(2)当面积最小时,求直线的方程; (3)当最小时,求直线的方程。例2.设圆满足:截轴所得弦长为2;被轴分成两段圆弧,其弧长的比为,在满足条
2、件、的所有圆中,求圆心到直线的距离最小的圆的方程。例3.设正方形(顺时针排列)的外接圆方程为,点所在直线的斜率为;(1)求外接圆圆心点的坐标及正方形对角线的斜率;(2)如果在轴上方的两点在一条以原点为顶点,以轴为对称轴的抛物线上,求此抛物线的方程及直线的方程;(3)如果的外接圆半径为,在轴上方的两点在一条以轴为对称轴的抛物线上,求此抛物线的方程及直线的方程。三.课后作业: 班级 学号 姓名1.若方程表示平行于轴的直线,则( )或 1 不存在2.将直线绕着它与轴的交点逆时针旋转的角后,在轴上的截距是( )3.是任意的实数,若在曲线上,则点也在曲线上,那么曲线的几何特征是 ( )关于轴对称 关于轴
3、对称 关于原点对称 关于对称4.过点任意的作一直线与已知直线相交于点,设点是有向线段的内分点,且,则点的轨迹方程是 ( )5.如果实数满足不等式,那么的最大值是 ( )6.过点作直线交圆于两点,则 。7.已知直线过点,且被圆截得的弦长为8,则的方程是 。一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)春秋谷梁传疏曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。韩非子也有云:“今有不才之子师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”
4、必须要有明确的传授知识的对象和本身明确的职责。8.甲、乙两地生产某种产品。甲地可调出300吨,乙地可调出750吨,A、B、C三地需要该种产品分别为200吨、450吨和400吨。每吨运费如下表(单位:元):ABC甲地635乙地596问怎样调运,才能使总运费最省?宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者则谓“教授”和“学正”。“教授”“学正”和“教谕”的副手一律称“训导”。于民间,特别是
5、汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。结果教师费劲,学生头疼。分析完之后,学生收效甚微,没过几天便忘的一干二净。造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。9.已知直角坐标平面上点和圆,动点到圆的切线的长与的比等于常数,求动点的轨迹方程,并说明它表示什么曲线。