ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:358.50KB ,
资源ID:534411      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-534411-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学必修四北师大版正弦型函数的图象(教学设计).doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学必修四北师大版正弦型函数的图象(教学设计).doc

1、 函数的图象(教学设计)教学目标:1、理解正弦型函数的定义及其中参数的意义; 2、会采用五点法画正弦函数的图像; 3、掌握函数图像之间的关联。重点、难点:正弦型函数的图像变换1的物理意义当,(其中,)表示一个振动量时,表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间称为这个振动的周期,单位时间内往复振动的次数,称为振动的频率。称为相位,时的相位称为初相。2图象的变换例 : 画出函数的简图。解:函数的周期为,先画出它在长度为一个周期内的闭区间上的简图,再左右拓展即可,先用五点法画图:函数的图象可看作由下面的方法得到的:图象上所有点向左平移个单位,得到的图象上

2、;再把图象上所点的横坐标缩短到原来的,得到的图象;再把图象上所有点的纵坐标伸长到原来的倍,得到的图象。一般地,函数,的图象(其中,)的图象,可看作由下面的方法得到:把正弦曲线上所有点向左(当时)或向右(当时)平行移动个单位长度;再把所得各点横坐标缩短(当时)或伸长(当时)到原来的倍(纵坐标不变);再把所得各点的纵坐标伸长(当时)或缩短(当时)到原来的倍(横坐标不变)。即先作相位变换,再作周期变换,再作振幅变换。问题:以上步骤能否变换次序?,所以,函数的图象还可看作由下面的方法得到的:图象上所点的横坐标缩短到原来的,得到函数的图象;再把函数图象上所有点向左平移个单位,得到函数的图象;再把函数的图

3、象上所有点的纵坐标伸长到原来的倍,得到的图象。3.实际应用例1:已知函数(,)一个周期内的函数图象,如下图 所示,求函数的一个解析式。解:由图知:函数最大值为,最小值为, 又, 由图知又, 图象上最高点为,即,可取,所以,函数的一个解析式为2由已知条件求解析式例2: 已知函数(,)的最小值是, 图象上相邻两个最高点与最低点的横坐标相差,且图象经过点,求这个函数的解析式。解:由题意:,又图象经过点, , 即,又, ,所以,函数的解析式为例3:已知函数(,)的最大值为, 最小值为,周期为,且图象过点,求这个函数的解析式。解:, 又, ,又图象过点,又,或,所以,函数解析式为或五、小结:1函数与的图象间的关系。2由已知函数图象求解析式;3由已知条件求解析式。六、作业:(1)函数的图象可由函数的图象经过怎样的变换得到?(2)函数的图象可由函数的图象经过怎样的变换得到?(3)将函数的图象上所有的点 得到的图象,再将 的图象上的所有点 可得到函数的图象。(4)由函数的图象怎样得到的图象(5)已知函数(,)的周期是,最小值是,且图象过点,求这个函数的解析式;(6)函数(,)的最小值是,其图象相邻的最高点和最低点的横坐标的差是,又图象经过点,求这个函数的解析式。(7)如图为函数(,)的图象中的一段,根据图象求它的解析式。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1