ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:13KB ,
资源ID:533735      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-533735-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学妙想奇思:口香糖问题.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学妙想奇思:口香糖问题.doc

1、数学妙想奇思:口香糖问题口香糖问题a.琼斯太太竭力想快点走过那个口香糖售货机,以免她的双胞胎看到。第一个孩子:妈,我想要口香糖。第二个孩子:妈,我也要,我要和比利一样的。b.口香糖售货机差不多空了,没法知道下一个糖球是什么颜色,琼斯太太要想得到两个同样的糖球,她必须准备花多少钱?c.琼斯太太可以花6便士买2个红球其中4便士买所有的白球,另2便士买一对红球;或者花8便士买2个白球。所以她必须准备8便士,对吗?d.错了。如果头两个球颜色不一样,那么第三个球必与其一相配,所以3便士就足够了。e.现在假设机器中有6个红球,4个白球,5个蓝球,你能算出琼斯太太需花多少钱能买一对同样的球吗?f.如果史密斯

2、太太带着她的三胞胎从同一个口香糖售货机旁过,你仔细想想,你认为4便士够吗?g.这次售货机中有6个红球,4个白球和一个蓝球,史密斯太太要花多少钱能买三个一样的球?需要多少钱?第二个口香糖问题是第一个口香糖问题的简单变化。可以用同样的思路来解决。在这个问题中,取头三个球可能是不同颜色红色、白色和蓝色。这是没有达到预想结果的最长排列,第四个球一定与前三个球中的一个相同。所以只要买4个球必能得到相同的一对球,琼斯太太要准备4便士。总之,对于n组球,每组一种颜色,就应准备买n+1个球。第三个问题比较难,史密斯太太是三胞胎而不是双胞胎,口香糖售货机中有6个红球,4个白球和1个蓝球,她得花多少钱才能买到3个

3、同样的球?其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。同上,我们首先要考虑最坏的情况,史密斯太太买到2个红球,2个白球和唯一的蓝球,总共5个红球,第6个球肯定是红球或白球。所以要使三胞胎都得到同样颜色的球,答案是6便士。假

4、如蓝球不只一个,她每种颜色先抽2个,那么第7个球就能满足三胞胎的要求。其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。噢!关键在于最“坏”情形的长。有人可能想通过给这11个球标上字母来解决这个问题,然后检查所有可能排列,看看在

5、出现三个同样球的排列中哪个是最长的。但是这种解决办法需列出ll!=3931680O种排列,即使同样颜色的球不用字母区分,也要列出2310种排列。总之,要抽取k个同色球的方法如下:有n组球(每组一个颜色,每组至少k个),那么要得到k个同色球必须抽取n(k-1)+1个球。你肯定还想研究一组球或多组球的球数少于k的情形。一般说来,“教师”概念之形成经历了十分漫长的历史。杨士勋(唐初学者,四门博士)春秋谷梁传疏曰:“师者教人以不及,故谓师为师资也”。这儿的“师资”,其实就是先秦而后历代对教师的别称之一。韩非子也有云:“今有不才之子师长教之弗为变”其“师长”当然也指教师。这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。这种问题的模式也能用于其它方面。例如,你要从52张牌中抽取7张同花色的牌,你要抽几次?这里n=4,k=7,公式给出的答案是:4(7-1)+1=25。尽管这是些简单的组合问题,但引出了有趣而复杂的概率问题。比如.你从n张牌中抽取7张牌(n从7到24),每次抽取后不再放回(显然,假如抽的张数小于7概率为0,如抽取25张以上概率为1),同花色的概率是多少?如果抽取的牌再放回经冼脾后再抽概率又是多少?一个更难的问题是:无论牌是否放回,获得同花色牌的期望值(概率的平均值)是多大呢?

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1