ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:208KB ,
资源ID:532690      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-532690-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学北师大版选修1-2知识导航 4.1.1数的概念的扩展 WORD版含解析.DOC)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学北师大版选修1-2知识导航 4.1.1数的概念的扩展 WORD版含解析.DOC

1、第四章 数系的扩充与复数的引入1.数系的扩充与复数的引入1.1数的概念的扩展自主整理1.把平方等于-1的数用符号i表示,规定i2=-1,把i叫作_.2.形如a+bi的数叫作_(a、b是实数, i是虚数单位).记作z=a+bi(a、bR).3.对于复数z=a+bi,a与b分别叫作复数z的_与_,并且分别用_与_表示,即a=_,b=_.4.复数的全体组成的集合叫作_,记作_,显然,_.5.z=a+bi中,当_时,z为实数;当b0时,z为虚数;当a=0,b0时,z为纯虚数.高手笔记1.数集之间的包含关系:NZQRC.可用图示表示:2.复数的分类:复数a+bi3.复数a+bi=0的充要条件为a=b=0

2、.4.复数z=a+bi(a、bR)的实部、虚部分别是a、b,而虚部不是bi名师解惑 如何判断含有参变量的复数是实数,虚数,纯虚数? 剖析:对于复数z=a+bi何时为实数,虚数,纯虚数?应按定义来加以判断.首先,应看a、b取值是aR,bR,还是aC,bC.若aR、bR,则a为实部,b为虚部;若aC,bC,则还应进一步进行运算求得z的实部、虚部.其次注意纯虚数应满足两条,即实部为0,虚部不为0.特别是虚部不为0,易漏掉而出错.讲练互动【例1】指出下列各数中,哪些为实数,哪些为虚数,哪些为纯虚数.3+,i,0,i,i4,3i-2,10i,i(-),i2,-i.解:实数有3+,0, i4,i2;虚数有

3、3i-2,10i,-i, i, i (-);纯虚数有i, i, i (-).绿色通道 把握复数的实部、虚部的概念及实数、虚数、纯虚数的定义,作出正确的分类.变式训练1.指出下列复数的实部和虚部.-i,3+i,(+3)i,-i2,i-1,0,5+.解:-i的实部为,虚部为-1;3+i的实部为3,虚部为;(+3)i的实部为0,虚部为+3;-i2的实部为1,虚部为0;i-1的实部为-1,虚部为;0的实部为0,虚部为0;5+的实部为5+,虚部为0.【例2】实数k为何值时,复数z=(k2-3k-4)+(k2-5k-6)i分别是(1)实数;(2)虚数;(3)纯虚数;(4)零?分析:根据复数的分类,弄清一个

4、复数满足什么条件分别为实数、虚数、纯虚数,分清复数的实部、虚部.解:(1)当k2-5k-6=0,即k=6或k=-1时,复数z为实数.(2)当k2-5k-60,即k6且k-1时,复数z为虚数.(3)当由得k=4或k=-1.由得k6且k-1,当k=4时,z为纯虚数.(4)当即k=-1时,z=0.绿色通道 由复数z的实部、虚部的取值来确定复数z是实数、虚数、纯虚数.在解题时关键是确定z的实部、虚部,并要注意纯虚数的概念满足两条:实部为零,虚部不为零.变式训练2.实数m为何值时,复数z=+(m2-2m-15)i(1)是实数;(2)是虚数;(3)是纯虚数;(4)是零?解:(1)当即即m=5时,z为实数.

5、(2)当即m5且m-3时,z为虚数.(3)当由得m=5或m=-1且m-3,即m=5或m=-1;由得m5且m-3.当m=-1时,z为纯虚数.(4)当由得m=5或m=-1且m-3,由得m=5或m=-3.当m=5时,z为零.【例3】复数z=log2(x2-5x+4)+ ilog2(x-3),当x为何实数时,(1)zR;(2)z为虚数;(3)z为纯虚数?分析:依照复数分类求解此题,但要注意对数函数本身的要求.解:(1)当即无解.不存在x使zR.(2)z为虚数,则x4当x4时,z为虚数.(3)当由得x=或x=,由得x3,由得x4,当x=时,z为纯虚数.绿色通道 本题考查了复数的分类及对数函数的定义域,解决此类题时,既要注意复数概念的要求,又要注意实数x的范围.变式训练3.设复数z=lg (m2-2m-2)+(m2+3m+2) i,mR.当m为何值时,z是(1)实数;(2)虚数;(3)纯虚数?解:(1)当由得m=-1或m=-2都满足.当m=-2或m=-1时,z为实数.(2)当由得m1+或m1+或m1-m-1且m-2时,z为虚数.(3)当由得m=3或m=-1,由得m-1且m-2,当m=3时,z为纯虚数.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1