1、数学公式多边形内角和公式数学公式多边形内角和公式已知已知正多边形内角度数则其边数为:360(180-内角度数)推论任意多边形的外角和=360正多边形任意两个相邻角的连线所构成的三角形是等腰三角形多边形的内角和定义n-2180多边形内角和定理证明证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形.因为这n个三角形的内角的和等于n180,以O为公共顶点的n个角的和是360所以n边形的内角和是n180-2180=(n-2)180.即n边形的内角和等于(n-2)180.证法二:连结多边形的任一顶点A1与其他各个顶点的线段,把n边形分成(n-2)个三角形.因为这(n-2)个三角形的内
2、角和都等于(n-2)180所以n边形的内角和是(n-2)180.证法三:在n边形的任意一边上任取一点P,连结P点与其它各顶点的线段可以把n边形分成(n-1)个三角形,教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。这(n-1)个三角形的内角和等于(n-1)180以P为公共顶点的(n-1)个角的和是180其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。所以多边形内角和公式n边形的内角和是(n-1)180-180=(n-2)180.