ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:198.50KB ,
资源ID:530829      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-530829-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学人教B版选修2-1学案:课堂导学 2.5直线与圆锥曲线 WORD版含解析.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

数学人教B版选修2-1学案:课堂导学 2.5直线与圆锥曲线 WORD版含解析.doc

1、课堂导学三点剖析一、利用直线与圆锥曲线的位置关系求字母的取值或取值范围【例1】 已知曲线C:x2y2及直线l:y=kx-1.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A、B两点,O是坐标原点,且AOB的面积为2,求实数k的值.解:(1)由消去y,得(12)2.由得k的取值范围为(,)(,)(,).(2)设(1,1)、(2,2),由(1)得12,12.又l过点D(0,-1),1212.(12)2()2,即.或k=.温馨提示 一般地,在讨论直线和圆锥曲线位置关系时,先联立方程组,再消去x(或y),得到关于y(或x)的方程,如果是直线与圆或椭圆则无需讨论二次项系数是否为零

2、(一定不为零),直接考虑的情况即可;如果是直线与双曲线或抛物线则需讨论二次项系数等于零和不等于零两种情况,这是要特别注意的问题.另外注意直线斜率不存在时的情形.二、有关曲线的弦长问题【例2】椭圆ax2+by2=1与直线x+y-1=0相交于A、B,C是AB的中点,若|AB|=22,OC的斜率为,求椭圆的方程.解析:设A(x1,y1)、B(x2,y2),代入椭圆方程并作差得a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.而 =-1, =kOC=,代入上式可得b=a.再由|AB|=|x2-x1|=2,其中x1x2是方程(a+b)x2-2bx+b-1=0的两根,故()2-4=4,将

3、b=a代入得a=,b=.所求椭圆的方程是x2+y2=3.温馨提示 利用设点代入、作差借助斜率的解题方法,称作“差点法”,是解决直线与圆锥曲线位置关系常用方法.三、最值问题【例3】 已知直线l:y=2x-4交抛物线y2=4x于A、B两点,试在抛物线AOB这段曲线上求一点P,使PAB的面积最大,并求出这个最大面积.分析:先求出弦长|AB|,再求出P点到直线AB的距离,从而可表示出PAB的面积,再求最值即可.解:由解得A(4,4),B(1,-2),知|AB|=3,设P(x0,y0)为抛物线AOB这条曲线上一点,d为P到直线AB的距离.d=|y022-y0-4|=|(y0-1)2-9|,-2y04,(

4、y0-1)2-90.d=9-(y0-1)2.从而当y0=1时,dmax=,S最大=3=.因此,当P(,1)时,PAB取得最大值,最大值为.温馨提示 解决本题的关键是弦AB为定值.将P到AB的距离的最值转化为二次函数问题求解.在应用配方法求最值时,一定要注意变量的取值范围.各个击破类题演练 1直线y=ax+1和双曲线3x2-y2=1相交于A、B两点,问a为何值时,以AB为直径的圆过坐标原点?解:设A(x1,y1)、B(x2,y2).AOB=90,kOAkOB=-1.x1x+y1y2=0,即(a2+1)x1x2+a(x1+x2)+1=0.又(3-a2)x2-2ax-2=0,代入式得a=1.变式提升

5、 1过点(1,0)的直线与双曲线=1的右支交于A、B两点,则直线AB的斜率k的取值范围( )A.|k|1 B.|k|2 C.|k| D.|k|1答案:B类题演练 2已知斜率为2的直线经过椭圆=1的右焦点F1,与椭圆相交于A、B两点,求弦AB的长.解:椭圆的右焦点F1的坐标为(1,0),直线AB的方程为y=2(x-1).由方程组消去y,整理,得3x2-5x=0.设直线l与椭圆交于A(x1,y1),B(x2,y2),由韦达定理,得x1+x2=,x1x2=0.则|AB|=.变式提升 2已知抛物线y2=6x的弦AB经过点P(4,2),且OAOB(O为坐标原点),求弦AB的长.解:由A、B两点在抛物线y

6、2=6x上,可设A(,y1),B(,y2).因为OAOB,所以=0.由OA=(,y1),OB=(,y2),得+y1y2=0.y1y20,y1y2=-36.点A、B与点P(4,2)在一条直线上,化简,得,即y1y2-2(y1+y2)=-24.将式代入,得y1+y2=-6.由和,得y1=-3-3,y2=-3+3,从而点A的坐标为(9+3,-3-3),点B的坐标为(9-3,-3+3).所以|AB|=6.类题演练 3从椭圆=1(ab0)上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且其长轴端点A及短轴端点B的连线AB平行于OM,若Q为椭圆上任一点,F2是右焦点,求F1QF2的最大值.解:如右图,点M

7、的坐标为(-c,),因为OMAB,所以kOM=kAB,=,即b=c,a=c.设|QF1|=m,|QF2|=n,F1QF2=,由余弦定理,得cos=-12-1=-1=0.当|QF1|=|QF2|时,等号成立,0cos1.的最大值为,即F1QF2的最大值为.变式提升 3已知焦点为F1(-2,0),F2(2,0)的椭圆与直线l:x+y-9=0有公共点,求椭圆长轴长的最小值.解:依题意,设椭圆方程为+=1(ab0),且c=2,则b2=a2-4.将椭圆方程与直线方程联立,得消去参数y,整理得(2a2-4)x2-18a2x+85a2-a4=0,因为直线l与椭圆有公共点,所以0,即(18a2)2-4(2a2-4)(85a2-a4)0,2a4-93a2+3400.解得a28,或a24(舍去),2a.即椭圆长轴长的最小值为.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1