1、课题: 立体几何中的向量方法(2)学习目标:1. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题;2. 掌握向量运算在几何中求两点间距离和求空间图形中的角度的计算方法.学习过程【学情调查情景导入】复习1:已知,且,求.复习2:什么叫二面角?二面角的大小如何度量?二面角的范围是什么?【问题展示,合作探究】探究任务一:用向量求空间线段的长度 问题:如何用向量方法求空间线段的长度?新知:用空间向量表示空间线段,然后利用公式求出线段长度.试试:在长方体中,已知,求的长.反思:用向量方法求线段的长度,关键在于把未知量用已知条件中的向量表示. 典型例题例1 如图,一个结晶体的形状为平行六面体,其
2、中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系? 变式1:上题中平行六面体的对角线的长与棱长有什么关系?变式2:如果一个平行六面体的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于, 那么由这个平行六面体的对角线的长可以确定棱长吗?探究任务二:用向量求空间图形中的角度例2 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线(库底与水坝的交线)的距离分别为,的长为,的长为.求库底与水坝所成二面角的余弦值.变式:如图,的二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于已知,求的长.
3、 动手试试练1. 如图,已知线段AB在平面内,线段,线段BDAB,线段,如果ABa,ACBDb,求C、D间的距离. 【达标训练,巩固提升】1. 已知,则 .2. 已知,则的夹角为 .3. 若M、N分别是棱长为1的正方体的棱的中点,那么直线所成的角的余弦为( )A. B. C. D.4. 将锐角为边长为的菱形沿较短的对角线折成的二面角,则间的距离是( )A. B. C. D.5.正方体中棱长为,,是的中点,则为( )A. B. C. D.【知识梳理,归纳总结】1. 求出空间线段的长度:用空间向量表示空间线段,然后利用公式;2. 空间的二面角或异面直线的夹角,都可以转化为利用公式求解.【预习指导,新课链接】