ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:2.77MB ,
资源ID:528880      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-528880-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《同步辅导》2015高中数学北师大版必修四导学案:《两角和与差的三角函数的应用》.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

《同步辅导》2015高中数学北师大版必修四导学案:《两角和与差的三角函数的应用》.doc

1、第4课时两角和与差的三角函数的应用1.能够熟练运用两角和与差的正弦、余弦和正切公式进行化简、求值、证明.2.强化学生在三角函数中的计算能力.3.培养学生整体换元的思想.前面我们共同学习了两角和与差的正弦、余弦和正切公式,并能进行简单的论证,两角和与差的正弦、余弦和正切公式,是对第一章三角函数的进一步巩固,也是与第二章平面向量的交汇点,又是解三角形必备的重要知识点.这一讲我们将进一步共同探究两角和与差的正弦、余弦和正切公式的综合应用,思考并回答下面几个问题.问题1:两角和与差的正弦、余弦和正切公式:C(-):=cos cos +sin sin ;C(+):=cos cos -sin sin ;S

2、(-):sin(+)=;S(+):sin(-)=;T(-):tan(-)=;T(+):tan(+)=.问题2:两角和与差的正切公式的常用变形(1)tan +tan =;tan -tan =;(2)tan tan =1-=-1;(3)tan(+)-(tan +tan )=;(4)tan(-)-(tan -tan )=.问题3:常用的角的变换形式=-=-;=(+)+=(+)-;(+)=(-)-(-);-=+(-).其中、为任意角.问题4:辅助角公式asin +bcos =sin(+)=cos(-),其中角、称为辅助角,由a,b的值唯一确定(tan =,tan =).1.sin 45cos 15+c

3、os 225sin 15的值为().A.-B.-C.D.2.若0,-0,cos(+)=,cos(-)=,则cos(+)=().A.B.-C.D.-3.已知cos(+)=,(0,),则cos =.4.若3sin x-cos x=2sin(x+),(-,),求的值.利用两角和与差的三角公式化简或求值(1)化简:;(2)求值:2sin 50+sin 10(1+tan 10).两角和与差的三角公式在解三角形中的应用已知锐角ABC中,sin(A+B)=,sin(A-B)=.(1)求证:tan A=2tan B;(2)设AB=3,求AB边上的高.利用两角和与差的公式求角已知、都是锐角,且sin =,sin

4、 =,求+.计算sin 43cos 13-sin 13cos 43的值等于().A.B.C.D.在ABC中,已知tan A,tan B是方程3x2+8x-1=0的两个根,则tan C等于().A.2B.-2C.4D.-4若sin A=,sin B=,且A、B均为钝角,求A+B的值.1.sin(+75)+cos(+45)-cos(+15)的值等于().A.0B.C.D.-2.已知cos(x-)=-,则cos x+cos(x-)的值是().A.-B.C.-1D.13.在ABC中,角A、B、C满足sin Bcos A=sin Ccos A+cos Csin A,则cos A=.4.已知0,cos(-

5、)=,sin(+)=,求sin(+)的值.如图所示,在平面直角坐标系xOy中,以Ox轴为始边的两个锐角为,它们的终边分别交单位圆于A,B两点,已知A,B两点的横坐标分别是和.(1)求tan(+)的值;(2)求+2的值.考题变式(我来改编):第4课时两角和与差的三角函数的应用1.能够熟练运用两角和与差的正弦、余弦和正切公式进行化简、求值、证明.2.强化学生在三角函数中的计算能力.3.培养学生整体换元的思想.前面我们共同学习了两角和与差的正弦、余弦和正切公式,并能进行简单的论证,两角和与差的正弦、余弦和正切公式,是对第一章三角函数的进一步巩固,也是与第二章平面向量的交汇点,又是解三角形必备的重要知

6、识点.这一讲我们将进一步共同探究两角和与差的正弦、余弦和正切公式的综合应用,思考并回答下面几个问题.问题1:两角和与差的正弦、余弦和正切公式:C(-):=cos cos +sin sin ;C(+):=cos cos -sin sin ;S(-):sin(+)=;S(+):sin(-)=;T(-):tan(-)=;T(+):tan(+)=.问题2:两角和与差的正切公式的常用变形(1)tan +tan =;tan -tan =;(2)tan tan =1-=-1;(3)tan(+)-(tan +tan )=;(4)tan(-)-(tan -tan )=.问题3:常用的角的变换形式=-=-;=(+

7、)+=(+)-;(+)=(-)-(-);-=+(-).其中、为任意角.问题4:辅助角公式asin +bcos =sin(+)=cos(-),其中角、称为辅助角,由a,b的值唯一确定(tan =,tan =).1.sin 45cos 15+cos 225sin 15的值为().A.-B.-C.D.2.若0,-0,cos(+)=,cos(-)=,则cos(+)=().A.B.-C.D.-3.已知cos(+)=,(0,),则cos =.4.若3sin x-cos x=2sin(x+),(-,),求的值.利用两角和与差的三角公式化简或求值(1)化简:;(2)求值:2sin 50+sin 10(1+ta

8、n 10).两角和与差的三角公式在解三角形中的应用已知锐角ABC中,sin(A+B)=,sin(A-B)=.(1)求证:tan A=2tan B;(2)设AB=3,求AB边上的高.利用两角和与差的公式求角已知、都是锐角,且sin =,sin =,求+.计算sin 43cos 13-sin 13cos 43的值等于().A.B.C.D.在ABC中,已知tan A,tan B是方程3x2+8x-1=0的两个根,则tan C等于().A.2B.-2C.4D.-4若sin A=,sin B=,且A、B均为钝角,求A+B的值.1.sin(+75)+cos(+45)-cos(+15)的值等于().A.0B

9、.C.D.-2.已知cos(x-)=-,则cos x+cos(x-)的值是().A.-B.C.-1D.13.在ABC中,角A、B、C满足sin Bcos A=sin Ccos A+cos Csin A,则cos A=.4.已知0,cos(-)=,sin(+)=,求sin(+)的值.如图所示,在平面直角坐标系xOy中,以Ox轴为始边的两个锐角为,它们的终边分别交单位圆于A,B两点,已知A,B两点的横坐标分别是和.(1)求tan(+)的值;(2)求+2的值.考题变式(我来改编):第4课时两角和与差的三角函数的应用1.能够熟练运用两角和与差的正弦、余弦和正切公式进行化简、求值、证明.2.强化学生在三

10、角函数中的计算能力.3.培养学生整体换元的思想.前面我们共同学习了两角和与差的正弦、余弦和正切公式,并能进行简单的论证,两角和与差的正弦、余弦和正切公式,是对第一章三角函数的进一步巩固,也是与第二章平面向量的交汇点,又是解三角形必备的重要知识点.这一讲我们将进一步共同探究两角和与差的正弦、余弦和正切公式的综合应用,思考并回答下面几个问题.问题1:两角和与差的正弦、余弦和正切公式:C(-):=cos cos +sin sin ;C(+):=cos cos -sin sin ;S(-):sin(+)=;S(+):sin(-)=;T(-):tan(-)=;T(+):tan(+)=.问题2:两角和与差

11、的正切公式的常用变形(1)tan +tan =;tan -tan =;(2)tan tan =1-=-1;(3)tan(+)-(tan +tan )=;(4)tan(-)-(tan -tan )=.问题3:常用的角的变换形式=-=-;=(+)+=(+)-;(+)=(-)-(-);-=+(-).其中、为任意角.问题4:辅助角公式asin +bcos =sin(+)=cos(-),其中角、称为辅助角,由a,b的值唯一确定(tan =,tan =).1.sin 45cos 15+cos 225sin 15的值为().A.-B.-C.D.2.若0,-0,cos(+)=,cos(-)=,则cos(+)=

12、().A.B.-C.D.-3.已知cos(+)=,(0,),则cos =.4.若3sin x-cos x=2sin(x+),(-,),求的值.利用两角和与差的三角公式化简或求值(1)化简:;(2)求值:2sin 50+sin 10(1+tan 10).两角和与差的三角公式在解三角形中的应用已知锐角ABC中,sin(A+B)=,sin(A-B)=.(1)求证:tan A=2tan B;(2)设AB=3,求AB边上的高.利用两角和与差的公式求角已知、都是锐角,且sin =,sin =,求+.计算sin 43cos 13-sin 13cos 43的值等于().A.B.C.D.在ABC中,已知tan

13、A,tan B是方程3x2+8x-1=0的两个根,则tan C等于().A.2B.-2C.4D.-4若sin A=,sin B=,且A、B均为钝角,求A+B的值.1.sin(+75)+cos(+45)-cos(+15)的值等于().A.0B.C.D.-2.已知cos(x-)=-,则cos x+cos(x-)的值是().A.-B.C.-1D.13.在ABC中,角A、B、C满足sin Bcos A=sin Ccos A+cos Csin A,则cos A=.4.已知0,cos(-)=,sin(+)=,求sin(+)的值.如图所示,在平面直角坐标系xOy中,以Ox轴为始边的两个锐角为,它们的终边分别

14、交单位圆于A,B两点,已知A,B两点的横坐标分别是和.(1)求tan(+)的值;(2)求+2的值.考题变式(我来改编):答案第4课时两角和与差的三角函数的应用知识体系梳理问题1:cos(-)cos(+)sin cos +cos sin sin cos -cos sin 问题2:(1)tan(+)(1-tan tan )tan(-)(1+tan tan )(2)(3)tan(+)tan tan (4)-tan(-)tan tan 问题3:(+)(-)(-)(-)(-)基础学习交流1.C原式=sin 45cos 15-cos 45sin 15=sin(45-15)=.2.Ccos(+)=cos(+

15、)-(-)=cos(+)cos(-)+sin(+)sin(-),而+(,),-(,),sin(+)=,sin(-)=,cos(+)=+=.3.(0,),+(,),sin(+)=,cos =cos(+)-=cos(+)cos+sin(+)sin=+=.4.解:3sin x-cos x=2(sin x-cos x)=2sin(x-),又(-,),=-.重点难点探究探究一:【解析】(1)原式=tan 15=tan(60-45)=2-.(2)原式=(2sin 50+sin 10)sin 80=(2sin 50+2sin 10)cos 10=2sin 50cos 10+sin 10cos(60-10)=

16、2sin(50+10)=2=.【小结】对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有:化为特殊角的三角函数值;化为正、负相消的项,消去求值;化分子、分母出现公约数进行约分求值.探究二:【解析】(1)sin(A+B)=,sin(A-B)=,=2,tan A=2tan B.(2)A+B,sin(A+B)=, tan(A+B)=-,即=-,将tan A=2tan B代入上式并整理,得2tan2B-4tan B-1=0,解得tan B=,舍去负值,得tan B=, tan A=2tan B=2+.设AB边上的高为CD,则AB=AD+DB=+=,由AB=3,得CD=2+, AB边上的

17、高等于2+.【小结】利用三角函数公式解三角形问题时,不仅要考虑使公式本身有意义的角度范围,还要考虑三角形内角需满足的要求.探究三:【错解】0,0, 0+,又cos =,cos =,sin(+)=sin cos +cos sin =+=,又 0+, +=或.问题+会等于吗?结论通过求三角函数值求角度时,最好求角度范围内是单调函数的三角函数值,可避免进一步讨论或出错.+,、都是锐角,sin =,sin =,0,0,0+.于是,正确解答如下:0,0, 0+,又cos =,cos =,cos(+)=cos cos -sin sin =-=.又在0之间,余弦值为的角只有,+=.思维拓展应用应用一:A原式

18、=sin(43-13)=sin 30=,故选A.应用二:A根据韦达定理,有tan A+tan B=-,tan Atan B=-,则tan C=tan-(A+B)=-tan(A+B)=-=2.应用三:A、B均为钝角且sin A=,sin B=,cos A=-=-=-,cos B=-=-=-.cos(A+B)=cos Acos B-sin Asin B=-(-)-=.又A,B,A+B2.由,知A+B=.基础智能检测1.A原式=sin(+45)+30+cos(+45)-cos(+45)-30=sin(+45)+cos(+45)+cos(+45)-cos(+45)-sin(+45)=0.2.Ccos

19、x+cos(x-)=cos x+cos x+sin x=cos x+sin x=(cos x+sin x)=cos(x-)=-1.3.sin Bcos A=sin Ccos A+cos Csin Asin Bcos A=sin(C+A)=sin B,又sin B0,所以cos A=.4.解:0,+,+.又cos(-)=sin(+)=,cos(+)=-=-,cos(+)=-=-.sin+(+)=sin(+)+(+)=sin(+)cos(+)+cos(+)sin(+)=(-)-=-.sin(+)=.全新视角拓展(1)由单位圆中三角函数的定义,可得cos =,cos =.由于,为锐角,所以sin =,sin =.从而tan =7,tan =,所以tan(+)=-3.(2)因为tan(+2)=tan(+)+=-1,又0,0,所以0+2,从而+2=.思维导图构建sin(x+)cos(x-)

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1