1、第六章第三节一、选择题1已知等比数列an满足a1a23,a2a36,则a7()A64B81C128D243答案A解析设数列an的公比为q,则q2,由a1a1q3得a11,a7127164.2(文)已知等比数列an的公比为正数,且a3a92a,a22,则a1()A2BCD答案B解析a3a9(a6)22a,()22,又an的公比为正数,q.a1.(理)已知各项均为正数的等比数列an,a1a2a35,a7a8a910,则a4a5a6()A5B7C6D4答案A解析an为正项等比数列,a1a2a3,a4a5a6,a7a8a9成等比数列,且a4a5a60,a4a5a65,故选A3在等比数列an中,a2a6
2、16,a4a88,则 ()A1B3C1或3D1或3答案A解析由a2a616,得a16a44,又a4a88,可得a4(1q4)8,q40,a44.q21,q101.4已知等比数列an满足an0,n1,2,且a5a2n522n(n3),则当n1时,log2a1log2a3log2a2n1等于()An(2n1)B(n1)2Cn2D(n1)2答案C解析由a5a2n522n(n3),得a22n,an0,an2n.易得结论5(文)已知an为等比数列,a4a72,a5a68,则a1a10()A7B5C5D7答案D解析本题考查了等比数列的性质及分类讨论思想a4a72,a5a6a4a78a44,a72或a42,
3、a74,a44,a72a18,a101a1a107,a42,a74a108,a11a1a107.(理)(2014山西四校联考)已知数列an的前n项和Sn2n1,则数列an的奇数项的前n项和为()ABCD答案C解析依题意,当n2时,anSnSn12n1;当n1时,a1S1211,an2n1也适合a1.因此,an2n1,2,数列an是等比数列数列an的奇数项的前n项和为.6等比数列an的公比为q,则“a10,且q1”是“对于任意正整数n,都有an1an”的()A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件答案A解析易知,当a10且q1时,an0,所以q1,表明an1an;若对任意
4、自然数n,都有an1an成立,当an0时,同除an得q1,但当an0时,同除an得0q0,a1a54,an为等比数列,a4,a32.log2a1log2a2log2a3log2a4log2a5log2(a1a2a3a4a5)log2alog2255.(理)(2014广东高考)若等比数列an的各项均为正数,且a10a11a9a122e5,则lna1lna2lna20_.答案50解析a10a11a9a122e5,a1a20e5.又lna1lna2lna20ln(a1a2a20)ln(a1a20)(a2a19)(a10a11)ln(e5)10lne5050.注意等比数列性质:若mnpq,则amana
5、paq,对数的性质logamnnlogam.三、解答题10(文)(2014江西高考)已知数列an的前n项和Sn,nN*.(1)求数列an的通项公式;(2)证明:对任意的n1,都存在mN*,使得a1,an,am成等比数列解析(1)Sn(nN*)Sn1(n2)当n2时,anSnSn13n2当n1时,a1S11,也符合上式an3n2,(nN*)(2)要使a1,an,am成等比数列,只需aa1.am即(3n2)21(3m2)即m3n24n2,n1,3n24n21,而此时,mN*,且mn对任意的n1,都存在mN*,使a,an,am成等比数列(理)(2014江西高考)已知首项都是1的两个数列an、bn(b
6、n0,nN*),满足anbn1an1bn2bn1bn0.(1)令cn,求数列cn的通项公式;(2)若bn3n1,求数列an的前n项和Sn.解析(1)因为anbn1an1bn2bn1bn0,bn0(nN*),所以2,即cn1cn2.所以数列cn是以首项c11,公差d2的等差数列,故cn2n1.(2)由bn3n1知ancnbn(2n1)3n1.数列an前n项和Sn130331532(2n1)3n1.3Sn131332(2n3)3n1(2n1)3n.相减得2Sn12(31323n1)(2n1)3n2(2n2)3n.所以Sn(n1)3n1.一、选择题1(文)在正项等比数列an中,若a2a4a6a8a1
7、032,则log2a7log2a8()ABCD答案D解析a2a4a6a8a1032,a62,log2a7log2a8log2log2log2log2.(理)在各项均为正数的等比数列an中,a2,a3,a1成等差数列,则的值为()ABCD或答案B解析设an的公比为q,则q0.a2,a3,a1成等差数列,a3a1a2,a1q2a1a1q,a10,1qq2,又q0,q,q.2已知正项等比数列an满足a7a62a5,若存在两项am,an使得4a1,则的最小值为()ABCD不存在答案A解析因为a7a62a5,所以q2q20,q2或q1(舍去)又4a1,所以mn6.则()(mn)(14).当且仅当,即n2
8、m时,等号成立此时m2,n4.故选A二、填空题3(2014安徽高考)数列an是等差数列,若a11,a33,a55构成公比为q的等比数列,则q_.答案1解析设数列an的公差为d,则a1a32d,a5a32d,由题意得,(a11)(a55)(a33)2,即(a32d1)(a32d5)(a33)2,整理,得(d1)20,d1,则q1,故q1.4若数列an满足a1,a2a1,a3a2,anan1,是首项为1,公比为2的等比数列,则an等于_答案2n1解析anan1a1qn12n1,即相加:ana12222n12n2,an2n2a12n1.三、解答题5(文)已知等比数列an中,a1,公比q.(1)Sn为
9、an的前n项和,证明:Sn;(2)设bnlog3a1log3a2log3an,求数列bn的通项公式解析(1)因为ann1,Sn,所以Sn.(2)bnlog3a1log3a2log3an(12n).所以bn的通项公式为bn.(理)等比数列an的各项均为正数,且2a13a21,a9a2a6.(1)求数列an的通项公式;(2)设bnlog3a1log3a2log3an,求数列的前n项和解析(1)设数列an的公比为q.由a9a2a6得a9a,所以q2.由条件可知q0,故q,由2a13a21得2a13a1q1,所以a1,故数列an的通项公式为an.(2)bnlog3a1log3a2log3an(12n)
10、.故2(),2(1)()().所以数列的前n项和为.6(文)(2014湖南高考)已知数列an的前n项和Sn,nN*.(1)求数列an的通项公式;(2)设bn2an(1)nan,求数列bn的前2n项和解析(1)当n1时,a1S11;当n2时,anSnSn1n,故数列an的通项公式为ann.(2)由(1)知,bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.(理)(2014新课标)已知数列an满足a11,an13an1.(1)证明an是等比数列,并求an的通项公式;(2)证明:1时,.1(1).所以,nN*.