1、2.1数列的概念与简单表示法(2) 学习目标 1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法. 学习过程 一、课前准备 (预习教材P31 P34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式? 复习2:数列如何分类?二、新课导学 学习探究探究任务:数列的表示方法问题:观察钢管堆放示意图,寻找每层的钢管数与层数n之间有何关系?1. 通项公式法:试试:上图中每层的钢管数与层数n之间关系的一个通项公式是 . 2. 图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y轴的 侧,而点的个数取决于数列的 从图象
2、中可以直观地看到数列的项随项数由小到大变化而变化的趋势3. 递推公式法:递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 4. 列表法:试试:上图中每层的钢管数与层数n之间关系的用列表法如何表示?反思:所有数列都能有四种表示方法吗? 典型例题例1 设数列满足写出这个数列的前五项. 变式:已知,写出前5项,并猜想通项公式. 小结:由递推公式求数列的项,只要让n依次取不同的值代入递推公式就可求出数列的项. 例2 已知数列满足, 那么( ).A. 20032004 B. 20042005 C. 20072
3、006 D. 变式:已知数列满足,求.小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. 动手试试练1. 已知数列满足,且(),求.练2.(2005年湖南)已知数列满足, (),则( ).A0 B. C. D. 练3. 在数列中,通项公式是项数n的一次函数. 求数列的通项公式; 88是否是数列中的项.三、总结提升 学习小结: 1. 数列的表示方法; 2. 数列的递推公式. 当堂检测(时量:5分钟满分:10分)计分:1. 已知数列,则数列是( ).A. 递增数列 B. 递减数列 C. 摆动数列 D. 常数列2. 数列中,则此数列最大项的值是( ).A. 3 B. 13 C. 13 D. 123. 数列满足,(n1),则该数列的通项( ). A. B. C. D. 4. 已知数列满足,(n2),则 .5. 已知数列满足,(n2), 则 . 课后作业 1. 数列中,0,(2n1) (nN),写出前五项,并归纳出通项公式. 2. 数列满足,写出前5项,并猜想通项公式.