ImageVerifierCode 换一换
格式:DOC , 页数:2 ,大小:312.50KB ,
资源ID:525606      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-525606-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(河北省沙河市二十冶综合学校高中分校高中数学2.1数列的概念与简单表示法2学案无答案新人教A版必修5.doc)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

河北省沙河市二十冶综合学校高中分校高中数学2.1数列的概念与简单表示法2学案无答案新人教A版必修5.doc

1、2.1数列的概念与简单表示法(2) 学习目标 1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法. 学习过程 一、课前准备 (预习教材P31 P34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式? 复习2:数列如何分类?二、新课导学 学习探究探究任务:数列的表示方法问题:观察钢管堆放示意图,寻找每层的钢管数与层数n之间有何关系?1. 通项公式法:试试:上图中每层的钢管数与层数n之间关系的一个通项公式是 . 2. 图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y轴的 侧,而点的个数取决于数列的 从图象

2、中可以直观地看到数列的项随项数由小到大变化而变化的趋势3. 递推公式法:递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 4. 列表法:试试:上图中每层的钢管数与层数n之间关系的用列表法如何表示?反思:所有数列都能有四种表示方法吗? 典型例题例1 设数列满足写出这个数列的前五项. 变式:已知,写出前5项,并猜想通项公式. 小结:由递推公式求数列的项,只要让n依次取不同的值代入递推公式就可求出数列的项. 例2 已知数列满足, 那么( ).A. 20032004 B. 20042005 C. 20072

3、006 D. 变式:已知数列满足,求.小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. 动手试试练1. 已知数列满足,且(),求.练2.(2005年湖南)已知数列满足, (),则( ).A0 B. C. D. 练3. 在数列中,通项公式是项数n的一次函数. 求数列的通项公式; 88是否是数列中的项.三、总结提升 学习小结: 1. 数列的表示方法; 2. 数列的递推公式. 当堂检测(时量:5分钟满分:10分)计分:1. 已知数列,则数列是( ).A. 递增数列 B. 递减数列 C. 摆动数列 D. 常数列2. 数列中,则此数列最大项的值是( ).A. 3 B. 13 C. 13 D. 123. 数列满足,(n1),则该数列的通项( ). A. B. C. D. 4. 已知数列满足,(n2),则 .5. 已知数列满足,(n2), 则 . 课后作业 1. 数列中,0,(2n1) (nN),写出前五项,并归纳出通项公式. 2. 数列满足,写出前5项,并猜想通项公式.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1